
Constraint Models for the Container
Pre-Marshaling Problem

Andrea Rendl and Matthias Prandtstetter

AIT Austrian Institute of Technology GmbH
Mobility Department, Dynamic Transportation Systems

Giefinggasse 2, 1210 Vienna, Austria
{matthias.prandtstetter|andrea.rendl}@ait.ac.at

Abstract. The container pre-marshaling problem (PMP) is an impor-
tant optimization problem that arises in terminals where containers are
stacked in bays before they are collected by vessels. However, if a due
container is stacked underneath other containers, it is blocked, and ad-
ditional relocations are necessary to retrieve the container from the bay,
which can cause significantly delays. To avoid this effect, the PMP is
concerned with finding a minimal number of container movements that
result in a container bay without blocked containers.
In this paper, we introduce a Constraint Programming (CP) formulation
of the PMP and propose a specialized search heuristic that attempts
to try out the most promising moves first. Furthermore, we present a
robust variant of the problem that considers the uncertainty of the arrival
time of collecting vessels. We show how the robust PMP can be very
naturally formulated using CP and give some preliminary results in an
experimental evaluation.

1 Introduction

Containers are an essential means for transporting large quantities of goods.
The main reason for this is the standardized format of containers through which
containers are transportable by all major means of transportation. This is im-
portant since transporting goods often requires a chain of different transport
modes, such as ship, train or truck. For example, a container that transports
goods from a Chinese factory to a European seller, will most likely first travel
by train from the factory to a harbor, then by ship to Europe, and then by truck
to its final destination.

An important aspect in the transportation chain of containers is the hub
between different modes of transport: the container terminal. Container termi-
nals handle the exchange of containers between different vessels, as well as the
storage of containers until their respective vessel arrives. For illustration, Fig. 1
shows a container terminal for trains and trucks. Since container terminals have
to handle an increasingly large amount of incoming and outgoing vessels, it is
increasingly difficult to manage all the traffic as well as the container storage
within the terminal.



2 Andrea Rendl and Matthias Prandtstetter

Fig. 1: Container terminal that operates as a hub for trucks (left) and trains
(right). Containers are stored in several container bays in the center. A gantry
crane moves the containers.

One of the many problems in container terminal optimization is the man-
agement of container bays, in which incoming containers are stored until they
are due for another vessel. A container bay consists of a row of adjacent stacks
in which containers are stacked upon arrival. When a container is due, it is
removed from the bay by the gantry crane. However, due containers are often
blocked by other containers in the stack, which results in additional re-locations
to access the container. This can significantly increase the loading time of a vessel
and cause dramatic (chains of) delays, resulting in displeased terminal clients.
Therefore, terminals pre-marshal their container bays by re-locating containers
to free all blocked containers before incoming vessels arrive. Thus, all containers
in the pre-marshaled bay are directly accessible at their due date.

1.1 Related Work

Pre-marshaling is known to be NP-hard [6] and different solution approaches
have been proposed for tackling it. Among them are dynamic programming [7,
12], corridor method based approaches [7], neighborhood search based meth-
ods [10], greedy heuristics [9], an A∗-search [9], a tree-search based approach [5],
a multi-commodity flow formulation [11] as well as an integer linear programming
approach [11]. However, to the best of our knowledge, no Constraint Program-
ming (CP) approach has been proposed so far for the PMP. In this paper, we
show how the PMP can be formulated and solved using Constraint Program-
ming.



Constraint Models for the Container Pre-Marshaling Problem 3

8 9

6

1 2

4

5

1015

3

7 14

1112 13

(a)

8 9

61 2

4

5

1015

3

7 14

11

12

13

(b)

Fig. 2: Container bay before (a) and after (b) pre-marshaling. Shaded containers
are blocking other containers; lower numbers indicate earlier due dates.

The PMP is only one of several optimization problems arising in container
terminals; we refer to [15–17] for an overview. Furthermore, the PMP is closely
related to the famous Blocks World Problem (BWP) [14] where the objective is
to relocate an initial configuration of blocks into a specific goal configuration. We
want to highlight, however, the differences between the PMP and the BWP [13]:
unlike the BWP, in the PMP the number of stacks, as well as their height, is
limited. Furthermore, in the BWP, the objective is to arrange the blocks in a
pre-specified configuration, while in the PMP, the final configuration is unknown,
but simply characterized by some features.

2 The Pre-marshaling Problem (PMP)

In container terminals, containers are stored in bays that consist of a number
of stacks of maximal height. Every container has a due date at which a vessel
will arrive to collect it. The due time of a container c is typically represented
by priority pc. The smaller the value of pc, the sooner c is due for delivery.
For instance, container with priority pc = 3 is the third container that will
be removed from the bay. Figure 2(a) shows a container bay with 6 stacks of
maximal height 4 that holds 15 containers that are labeled with their priority.

The priority of a container is often not known at its arrival in the bay, there-
fore containers are often stacked randomly. As a consequence, due containers are
often blocked by other containers that are due at a later time. In this case, the
gantry crane has to perform additional relocations, so-called idle strokes, to ‘free’
the blocked container. This can result in a severe overhead in processing time
which can lead to significant (chains of) delays within the terminal. Figure 2 (a)
illustrates a bay with five blocking containers.

The pre-marshaling problem (PMP) is concerned with re-locating containers
in a bay such that every container can be removed at its due date without any
further relocations. More specifically, the PMP deals with finding a minimal
number of container movements that result in a container bay without blocking
containers. Figure 2(b) shows the result of pre-marshaling the container bay
from Figure 2(a).



4 Andrea Rendl and Matthias Prandtstetter

2.1 Formal problem formulation

We consider a container bay with S stacks of maximal height H where a set of
containers C are stored. Each container c ∈ C is assigned a priority pc ∈ N that
indicates when the container will be transported from the bay: the smaller pc,
the earlier the container will be stowed into a vessel. If a container c is stored
on top of a container that has a lower priority than c, then c is called a blocking
container. The number of containers with priority c (multiplicity of c) is given
by µ(c).

The initial bay setup is denoted B where Bs,t is the t-th container in the
s-th stack, with (s, t) ∈ S × T and write, Bs,t = 0 if slot Bs,t is empty. A stack
Bs, s ∈ S is said to be valid iff

µs(c) ≤ µ(c), for c ∈ C, (1)

Bs,t = 0⇒ Bs,t+1 = 0, for t ∈ T \ {H} (2)

Thus, a stack is valid if it does not contain more containers of priority c than are
available (Eq. 1) and if a slot at position t is empty, all subsequent slots must
also be. A stack Bs, s ∈ S is called perfect, if it is valid and

Bs,t ≥ Bs,t+1, for t ∈ T \ {H} (3)

holds, i.e. no container in the stack lies underneath a container with higher
priority (no containers are blocked). Furthermore, container bay B is valid, iff

Bs is valid, for s ∈ S (4)∑
s∈S

µs(c) = µ(c), for c ∈ C (5)

thus, if each stack in B is valid (Eq. 4) and for every priority c ∈ C, the bay
contains exactly the number of corresponding containers (Eq. 5). A bay is called
perfect if all stacks are perfect.

The bay can be altered by performing particular moves (actions): the topmost
container from one stack can be moved to the top of another stack. Therefore,
we define the container relocation r = (i, j) as the movement of the topmost
container of stack Bi to the top of stack Bj . A move is valid iff Bi,1 6= 0 and
Bj,H = 0, i.e., at least one container is stored in the i-th stack and the number
of containers in the j-th stack is less than the maximum height.

The aim of the PMP is to find a sequence of moves that transforms the
initial bay B into a bay without blocking containers. Thus, σ = (r1, . . . , rK) is
a solution to the PMP if every move r ∈ σ is valid and σ transforms B into a
perfect bay. A solution σ∗ = (r1, . . . , rK∗) is said to be optimal if K∗ ≤ K for all
valid solutions σ. Let us denote by K = {1, . . . ,K} the set of steps in a solution
and by K0 = K ∪ {0}.

3 A Constraint Model for the PMP

We can easily solve the PMP via Constraint Programming (CP) by iteratively
trying to find a solution with exactly k ≥ 0 container moves, as outlined in



Constraint Models for the Container Pre-Marshaling Problem 5

Algorithm 1: PMP(bay layout B)

Input: initial bay layout B
1 k ← getLowerBound(B);
2 while true do
3 σ ← solveDecisionProblem(k,B);
4 if σ 6= NIL then
5 return solution;

6 k ← k + 1;

Alg. 1. When starting with a lower bound for k and iteratively increasing k if no
solution could be found, the first returned solution provides an optimal solution
for the original PMP formulation. If the lower bound on k is tight, the number of
iterations is kept low. Therefore, we utilize the lower bound computation meth-
ods proposed by Bortfeldt and Forster [5] deriving the lower bound according to
different features of the container bay, such as the number of blocking containers.

Our constraint model is based on an AI planning perspective [3, 2], where we
consider states that can be altered by a limited set of actions (moves). Starting
with an initial state (the initial bay layout), we search for a sequence of moves,
until a desired end state (perfect bay) is reached. In our model, the main decision
variables concern the container bay states.

3.1 Variables

We use two kinds of variables to represent the PMP. First, variables bayk
s,t rep-

resent the bay state after performing move k, with k ∈ K0, 1 ≤ s ≤ W , and
1 ≤ t ≤ H. All variables bayk

s,t range over the domain C0 (set of containers

including the empty slot). Thus, bayK
s,t represents the final bay state and bay0

s,t

corresponds to the initial layout.
Second, we introduce 0-1-variables movek

s,t that indicate whether a container
is moved to the t-th tier of the s-th stack during move k (with 1 ≤ s ≤ W ,
1 ≤ t ≤ H, and k ∈ K).

3.2 Constraints

First, we assign the initial state of the bay, B, to the variables bay0:

bay0
s,t = B[s][t] for (s, t) ∈ S × T (6)

Next we state that no container may disappear or appear twice in a bay after
each move k. More specifically, we state that each priority c must occur as often
as its multiplicity µ(c):∣∣∣{bayk

s,t : bayk
s,t = c

}∣∣∣ = µ(c) for c ∈ C0, k ∈ K (7)



6 Andrea Rendl and Matthias Prandtstetter

We implemented Constraint (7) using multiple occurrence constraints. Further-
more, the multiplicity of the empty slot is µ(0) = S∗H− ĉ where ĉ is the number
of containers in the bay. Constraints (8) ensure that unchanged slots stay the
same: all slots that are neither ‘0’ at steps k − 1 and k have obviously not been
changed and must stay the same:

bayk−1
s,t 6= 0 ∧ bayk

s,t 6= 0⇒ bayk−1
s,t = bayk

s,t for (s, t) ∈ S × T , k ∈ K (8)

Since expressing Constraints (8) with standard available (global) constraints
resulted in considerably more, additional variables (and constraints), we decided
to implement a user defined constraint which straightforwardly checks whether
the Constraints (8) are fulfilled. Furthermore, we state that only one container
may be moved in each step k:∑

(s,t)∈S×T

movek
s,t = 1 for k ∈ K (9)

and we link the bay variables with the move variables, i.e. we ensure that the
corresponding move variable is set when a container is moved to a (new) position
in step k.

movek
s,t ≤ bayk

s,t for (s, t) ∈ S × T , k ∈ K (10)

movek
s,t ≤ 1−min

{
1, bayk−1

s,t

}
for (s, t) ∈ S × T , k ∈ K (11)

movek
s,t ≥ min

{
1, bayk

s,t

}
− bayk−1

s,t for (s, t) ∈ S × T , k ∈ K (12)

(13)

Finally, we specify the perfect bay setup by stating that priority of slot t in stack
s has to be less or equal to the priority in slot t− 1.

bayK
s,t ≤ bayK

s,t−1 for (s, t) ∈ S × T \ {1} (14)

Note that this is feasible since we represent empty slots by ‘0’.

3.3 A Specialized Search Heuristic

Variable Selection Search is only performed on the bay variables; the move
variables are set by the constraints. We apply a (semi) static variable ordering
assuring that all variables bayk for step k are instantiated before variables for
step k′ > k are selected. This way we search the bay states step by step. However,
since the value selection (that determines which container to move within the
bay) is dynamic, the variable order within one step k is determined heuristically,
as explained below.



Constraint Models for the Container Pre-Marshaling Problem 7

Value Selection A smart value selection heuristic requires some knowledge about
which container move would be beneficial in the current bay state. Therefore,
we employ the heuristic of Bortfeldt and Forster [5] that, given a bay layout,
returns a sorted list of promising movesM, where the potentially best moves are
first in the list. The list M is calculated by classifying moves according to how
they improve or impair the current bay state. For instance, a move that renders
an imperfect stack perfect, is called a bad-good move, since it transforms a bad
into a good state. In the same fashion, good-bad, good-good and bad-bad moves
are defined. Note, that moves that worsen the bay state, good-bad and bad-bad,
are often essential to ‘dig out’ containers and thus reach a solution.

In summary, we compute M for the current state at step k ∈ K, and try
out every move m ∈M, starting with the first (the most promising one). Then,
the selected move m determines which state variable to search on next, as well
as its value. More specifically, we set the state variable of the target position of
the moved container with the container value. This choice sets all other state
variables, which is essential since therefore mainly one variable-value choice is
needed to reach the next step k + 1.

4 A robust variant of the PMP

In real-world settings, the exact arrival time of a vessel is quite uncertain. In
fact, most vessels are expected to arrive within a time window instead of at
an exact time. Since the container priorities in the classical PMP are based
on the scheduled arrival times instead of time windows of vessels (and those
time windows often overlap), the initially expected priority of a container may
differ from the actual priority. Thus, perfect bays that are obtained through the
classical PMP approach are easily rendered imperfect, if the arrival time windows
of vessels are not considered. We therefore aim at finding a sequence of container
moves that produces a final bay setup that is robust concerning expected vessel
delays.

The (expected) arrival time of a vessel can be represented by some probability
distribution, for instance a normal distribution with the scheduled arrival time
as mean and the expected delay as standard deviation. However, we simplify
this notion by considering the arrival time as a simple time window (where the
arrival at any time within the time window has the same probability and thus
represents a uniform distribution). Based on the arrival time window, we can
deduce a priority range for the container that will be collected. More specifically,
a container c has a priority range pc = {al, au} where al is the earliest possible
priority, and au is the latest. For instance, a priority range of pc = {4, 6} denotes
that container cmay be the fourth, fifth or sixth container to be removed from the
container bay. Figure 3 illustrates a bay where for some containers the priorities
are given as ranges.

A stack Bs, s ∈ S is called robust, if it is valid and

p
Bs,t

l ≥ pBs,t+1
u , for t ∈ T \ {H} (15)



8 Andrea Rendl and Matthias Prandtstetter

Fig. 3: Container bay where the priorities of some containers are ranges

holds, i.e. the upper bound of the priority of the container at Bs,t+1 that is
stacked upon container Bs,t, has to be smaller or equal to the lower bound of
container c2. We say that the container bay B is robust, iff it is valid and all
stacks are robust.

Please note, that a given container bay with priority ranges may not have a
robust configuration. For instance, consider a 4 × 4 bay with 5 containers that
all have the same priority range 0..5. This bay cannot be altered to a robust
bay configuration, since in some stack, two containers with range {0..5} have to
be stacked over another. Therefore, it can be useful to determine beforehand if
a robust configuration exists, which can be easily formulated using CP. This is
part of our current work.

To the best of knowledge, very little has been investigated into studying
robust or stochastic variants of the pre-marshaling problem. In very recent work,
Borjan et.al. [4] present a mathematical model for the dynamic version of the
Container Relocation Problem (CRP), and also consider uncertainty. The CRP
is very similar to the PMP, where the goal is to additionally empty the bay while
performing relocations.

5 A Constraint Model for the Robust PMP

The constraint model for the robust PMP is based on the PMP model from
Sec. 3. The main difference lies within the notion of container priorities: in the
robust PMP, we consider container priorities as range {lb..ub} where lb < ub and
lb denotes the lower bound of the container’s priority, and ub the upper bound.

Furthermore, we assign a unique id c ∈ {1, . . . , C} to each container. This is
necessary in order to track containers to assure that no container occurs multiple
times or disappears during a move. More specifically, in the PMP model (Sec. 3),
we were able to assure that all containers stay in the bay after each move by
checking the multiplicity of each priority (Constraint (7)). However, in the robust
PMP, priorities are ranges and considering the multiplicity of ranges is much
more expensive. Therefore, we assign a unique id to each container to enhance
modeling.



Constraint Models for the Container Pre-Marshaling Problem 9

The priority range for container c is denoted by pci with i ∈ {l, u} where pcl
is the lower bound, and pcu is the upper bound. Note, that the empty slot ‘0’
has priority p0l = p0u = 0 and containers c with a single priority value v have the
same upper and lower bound pcl = pcu = v.

5.1 Variables

We apply the same set of variables as for the classical PMP (see Section 3.1).
However, the meaning of the bay variables is slightly different: while in the
classical PMP model the domain C of variables bay represented the container
priorities, in the robust PMP its domain represents the container id.

5.2 Constraints

The constraints for the robust PMP are the same as for the classical PMP, with
the exception of the final bay configuration. Therefore, after stating constraints
(6)-(12), we constrain the final bay setup by:

p
bayK

s,t
u ≤ pbay

K
s,t−1

l for (s, t) ∈ S × T \ {1} (16)

More specifically, Constraint (16) states that the upper bound of the priority
range of the container in slot t has to be less or equal than the lower bound
of the container in slot t − 1. This is necessary to avoid an overlap within the
container priority range of two stacked containers. For instance, container c1
with priority range pc1 = {0..4} may not be stacked upon container c2 with
pc2 = {2..9} since the ranges overlap: {0..4} ∩ {2..9} = {2..4}. Therefore, if for
instance, c1’s priority is realized with 3 and c2 with 2, then c1 would block c2.

6 Preliminary Results

We conducted a computational evaluation to assess the performance of the pre-
sented CP models. Note that the CP models were implemented in Java 7 using
the freely available Choco framework [8] version 2.1.5 as CP solver. We first
discuss results for the PMP model and then continue with the robust PMP
model.

6.1 Evaluating the CP Model for the PMP

We compare the PMP model from Sec. 3 to one of the fastest current ap-
proaches [12]: a dynamic program combined with branch-and-bound, denoted
DPBnB. Each approach is given a maximum of 600s computation time to find
an optimal solution for the test instances.

As test instances, we decided to rely on the instance generator provided by
Expósito-Izquierdo et al. [9] via [1]. Unfortunately, the original instances used
in [9] are not publicly available. The instances are grouped into sets according



10 Andrea Rendl and Matthias Prandtstetter

DPBnB CP
#solved time[s] #solved time[s]

0
4

x
0
4
0
5
0

001 100 0.03 100 1.79
002 100 0.02 100 0.55
003 100 0.02 100 0.49
004 100 0.02 100 0.43

0
7
5

001 100 0.12 – –
002 100 0.10 51 117.41
003 100 0.06 87 46.96
004 100 0.06 85 26.16

Table 1: Results for solving the PMP on instances with 4 stacks of maximal
height 4 with either 50% or 75% of container coverage and 4 difficulty levels
(001 is the most difficult level).

to the bay size (4 × 4 stands for 4 stacks of maximal height 4), the utilization
rate (either 50% or 75% of the available tiers are filled with containers), and the
difficulty level (1 to 4) that is a rough estimation on how disordered the bays are
(with 1 being the hardest). Each of these sets contains 100 (pairwise different)
instances.

The experiments were carried out on a single core of an Intel R© Core
TM

2 Quad
CPU Q9300 with 2.50GHz and 3GB RAM.

Table 1 documents how often each algorithmic setup reached an optimal solu-
tion, as well as the average computation times (over all 100 instances). Columns
report the number of instances solved to optimality and the average computa-
tion time for each approach; rows represent the set of 100 instances with respect
to their size, coverage rate, and difficulty level.

We observe that the CP model is not yet competitive with the current state
of the art, in particular on dense instances, where the container bay contains a
lot (75%) of containers. While for less dense instances (50% coverage), the CP
model can solve all instances, it only manages to solve 85% of the easiest dense
instances, and for the most difficult level, cannot solve a single instances within
the given time limit.

We believe that one major drawback of the current CP formulation is the lack
of a mechanism (in form of a constraint or search heuristic) that stops search
on bay states that have already been reached (and thus should not be part of
an optimal solution). This is difficult to formulate effectively as a constraint in
CP. However, since the DPBnB approach is able to eliminate these bay states
naturally, we are currently working on an integration of this approach into our
CP model.

6.2 Evaluating the CP Model for the Robust PMP

We conducted some first tests on the robust PMP model from Sec. 5. The in-
stances for the robust PMP are based on the instances for the PMP that we



Constraint Models for the Container Pre-Marshaling Problem 11

instance # moves time [s] nodes backtracks

0 5 0.186 41 66
1 6 0.625 474 933
2 5 0.222 66 116
3 5 0.125 41 51
4 5 0.938 1301 2561

Table 2: Preliminary results for the robust PMP on instances with 50% coverage
and medium difficulty level.

modify: we first randomly assign each container to a vessel (train, truck or ship)
and assign each vessel an arrival time that is reflected by the priority of the
container in the PMP instance. Then we deduce each container’s priority range
by the vessels’ arrival time window. More specifically, we create an arrival time
window for each vessel that is based on a distribution of expected delays.

The experiments were carried out on a single core of an Intel R© Core
TM

i7
CPU M 640 with 2.80GHz and 1GB RAM.

The preliminary results are summarized in Tab. 2 that shows the number of
moves to render the bay perfect, the solving time, as well as some information on
search. We see that we are able to solve these rather small instances quickly, how-
ever, we still need to assess our approach on larger and more complex problem
instances.

7 Conclusions

In this paper, we introduced a new problem to the Constraint Programming com-
munity, the container pre-marshaling problem (PMP). The PMP is concerned
with finding a minimal sequence of container relocations such that the resulting
container bay hosts no blocked containers. Our contributions are two-fold: first,
we present the first constraint model for the PMP and second, we introduce a
robust variant of the PMP and show how the CP model for the PMP can be
easily and naturally extended to the robust formulation.

In an initial experimental evaluation, we assess both constraint models. We
observe that the PMP model is still not competitive and requires enhancement.
In particular, we compare the CP model to a dynamic programming based ap-
proach that represents the current state of the art. Our current (and future)
work is focused on improving the constraint model by integrating features of the
mentioned DP-based approach into the CP model. Some initial experiments on
the robust PMP (for which there are no alternative approaches yet) show good
results on small instances.

For future work, we plan to enhance and extend both our CP models to
render them competitive with existing approaches. Furthermore, we want to
consider alternative formulations and explore alternative solving approaches for
tackling the robust PMP.



12 Andrea Rendl and Matthias Prandtstetter

Acknowledgments

This work is part of the project TRIUMPH, partially funded by the Austrian
Federal Ministry for Transport, Innovation and Technology (BMVIT) within
the strategic programme I2VSplus under grant 831736. The authors thank-
fully acknowledge the TRIUMPH project partners Logistikum Steyr (FH OÖ
Forschungs & Entwicklungs GmbH), Ennshafen OÖ GmbH and via donau –
Österreichische Wasserstraßen-Gesellschaft mbH.

References

1. http://sites.google.com/site/gciports (last accessed April 2013)
2. Barták, R., Toropila, D.: Reformulating constraint models for classical planning.

In: Wilson, D., Lane, H.C. (eds.) FLAIRS Conference. pp. 525–530. AAAI Press
(2008)

3. van Beek, P., Chen, X.: Cplan: A constraint programming approach to planning.
In: Hendler, J., Subramanian, D. (eds.) AAAI/IAAI. pp. 585–590. AAAI Press /
The MIT Press (1999)

4. Borjan, S., Manshadi, V., Barnhart, C., Jaillet, P.: Dynamic stochastic optimiza-
tion of relocations in container terminals. working paper, submitted, MIT (2013),
http://web.mit.edu/jaillet/www/general/container13.pdf

5. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling
problem. European Journal of Operational Research 217(3), 531–540 (2012)

6. Caserta, M., Schwarze, S., Voß, S.: Container rehandling at maritime container
terminals. In: Böse, J.W. (ed.) Handbook of Terminal Planning, Operations Re-
search/Computer Science Interfaces Series, vol. 49, pp. 247–269. Springer New
York (2011)

7. Caserta, M., Voß, S.: A corridor method-based algorithm for the pre-marshalling
problem. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G., Ekárt, A.,
Esparcia-Alcázar, A., Farooq, M., Fink, A., Machado, P. (eds.) Applications of
Evolutionary Computing, Lecture Notes in Computer Science, vol. 5484, pp. 788–
797. Springer (2009)

8. choco Team: choco: an Open Source Java Constraint Programming Li-
brary. Research report 10-02-INFO, École des Mines de Nantes (2010),
http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf

9. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M.: Pre-marshalling
problem: Heuristic solution method and instances generator. Expert Systems with
Applications 39(9), 8337–8349 (2012)

10. Lee, Y., Chao, S.L.: A neighborhood search heuristic for pre-marshalling export
containers. European Journal of Operational Research 196(2), 468–475 (2009)

11. Lee, Y., Hsu, N.Y.: An optimization model for the container pre-marshalling prob-
lem. Computers & Operations Research 34(11), 3295–3313 (2007)

12. Prandtstetter, M.: A dynamic programming based branch-and-bound algorithm
for the container pre-marshalling problem. Tech. rep., AIT Austrian Institute of
Technology (2013), submitted to European Journal of Operational Research

13. Rodŕıguez-Molins, M., Salido, M.A., Barber, F.: Intelligent planning for allocating
containers in maritime terminals. Expert Syst. Appl. 39(1), 978–989 (2012)

14. Slaney, J.K., Thiébaux, S.: Blocks world revisited. Artif. Intell. 125(1-2), 119–153
(2001)



Constraint Models for the Container Pre-Marshaling Problem 13

15. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature
update. OR Spectrum 30, 1–52 (2008)

16. Steenken, D., Voß, S., Stahlbock, R.: Container terminal operation and operations
research - a classification and literature review. OR Spectrum 26, 3–49 (2004)

17. Vis, I.F., de Koster, R.: Transshipment of containers at a container terminal: An
overview. European Journal of Operational Research 147(1), 1–16 (2003)


