
Hybrid Heuristics for Multimodal Homecare
Scheduling

Andrea Rendl1, Matthias Prandtstetter1 Gerhard Hiermann2, Jakob
Puchinger1, and Günther Raidl2

1 AIT Austrian Institute of Technology
Mobility Department, Dynamic Transportation Systems

2 Vienna University of Technology, Austria

Abstract. We focus on hybrid solution methods for a large-scale real-
world multimodal homecare scheduling (MHS) problem, where the ob-
jective is to find an optimal roster for nurses who travel in tours from
patient to patient, using different modes of transport. In a first step, we
generate a valid initial solution using Constraint Programming (CP). In
a second step, we improve the solution using one of the following meta-
heuristic approaches: (1) variable neighbourhood descent, (2) variable
neighborhood search, (3) an evolutionary algorithm, (4) scatter search
and (5) a simulated annealing hyper heuristic. Our evaluation, based
on computational experiments, demonstrates how hybrid approaches are
particularly strong in finding promising solutions for large real-world
MHS problem instances.

1 Introduction

The demand for care of the elderly is constantly increasing in today’s western
world, thus efficient healthcare services are of great significance. The idea behind
home healthcare is to nurse patients at home instead of at retirement homes:
patients can book different kinds of jobs (e.g. cleaning, cooking, medical services)
and nurses of adequate qualification visit patients in a tour, using a specific
transport mode. The goal is to find a nurse roster where all jobs are assigned to
adequate nurses and employer, nurse and customer satisfaction is maximized.

However, finding a good nurse roster is challenging, since the problem is
a combination of two NP-hard problems: vehicle routing with time windows
(VRPTW) [4, 5] and nurse rostering (NRP) [7]. Moreover, we consider a large-
scale real-world setup from a Viennese public healthcare company. Therefore, we
apply a heuristic approach since exact approaches are typically too expensive for
large instances. The idea is to start with an initial valid solution that is then sys-
tematically improved by different metaheuristical approaches that we evaluate in
this work. Another aim is to construct a flexible framework that can be applied
in other homecare companies with similar side constraints. Therefore, our ap-
proach is as generic as possible, where side constraints can be easily altered. We
first present the problem (Section 2), initial solution generation (Section 3), the
metaheuristics (Section 4), our computational results (Section 5) and conclude
our work in Section 6.

2 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

2 The Multimodal Homecare Scheduling Problem

The Multimodal Homecare Scheduling (MHS) problem deals with finding a ros-
ter for nurses who perform nursing services at patients’ homes. Therefore, the
problem contains a rostering component (assigning nurses to jobs, wrt various
shift/working hours restrictions), as well as a vehicle routing component (nurses
travel in tours from patient to patient, starting at their home). The multimodal
aspect arises from the transport mode each nurse chooses for travelling.

Basically, we have a set of customers, the patients, who book one or more
jobs, daywise summarised in the set of jobs J = {1, . . . , J}, with 1 ≤ J . Each
job has an associated location, given as GPS coordinate, a start time window
in which the job should start, and a duration. Furthermore, each job requires
a minimal qualification q ∈ Q of whoever performs the job (e.g. taking blood
samples requires a medical qualification). In our problem setup, |Q| = 5, i.e.
there are 5 different qualifications.

Each job has to be assigned to one of the N nurses defined in set N =
{1, . . . , N}, with 1 ≤ N . Since nurses travel to patients starting from their
home, we store the home location of each nurse as GPS coordinate. Each nurse
has a qualification q ∈ Q and may only perform jobs that require a qualification
that is less or equal the nurse’s maximal qualification. Hence, nurses of higher
qualification may perform lower-qualified jobs, but not vice versa. Nurses can
only work within specified time windows that vary from day to day, and have a
minimal and maximal number of working hours per day.

In addition to nursing jobs, we also consider pre-allocated jobs that nurses
perform in addition to nursing (e.g. team meetings). These jobs are assigned to
a fixed location and nurse and make up at most 5% of all jobs. Furthermore,
patients and nurses can state negative preferences towards another, for instance,
a nurse might refuse to work at a patient who owns a dog if she has a dog allergy,
or a female patient might refuse a male nurse. In this case, the nurse may not
be assigned to the respective job in the roster.

A novel aspect in this work is the consideration of multimodality: each nurse
states her preferred mode of transport (public transport or car) that we consider
in creating the roster. To obtain meaningful results, it is crucial to have accurate
travel time estimates for each transport mode. Therefore, we obtain travel times
according to the GPS coordinates of nurses and jobs based on data from (1)
the Viennese public transport system, for public transport and (2) a large set of
historical data from Viennese floating car data for transport by car.

2.1 Objective Function

In this work, we want to find a valid MHS roster, that is also (closely) optimal
for employer, employee and customer and therefore

1. minimizes the costs for the employer (e.g. minimizes travel times),
2. maximizes customer satisfaction (e.g. by minimizes deviations from cus-

tomer preferences, such as time window violations or preferences for nurses)

Multimodal Homecare Scheduling 3

3. maximizes nurse satisfaction (e.g. minimizes deviations from contractual
constraints and other nurse preferences)

The quality of a solution is assessed by an objective function that assigns a real
number, the objective value ob, to a solution. We formulate the problem as a
minimization problem, and design our objective function as a weighted sum of
terms obi, each representing a type of constraint violation i:

ob = γj*obj + γtw*obtw + γq*obq + γp*obp + γd*obdt + γn*obn + γtt*obtt

We want to immediately determine the number of hard constraint violations
from the objective value and therefore weight each term obi with a normalization
factor γi. Thus, for each obi, we set γi such that the objective value of a valid
solution lies between 0 and 1. Furthermore, we define each obi such that every
hard constraint violation increases the objective value by 1. For instance, an
objective value of ‘17.34’ states that the respective solution contains 17 hard
constraint violations. The remaining ‘0.34’ represent the costs for the ‘valid part’
of the solution (e.g. travel time, working time, etc). We briefly summarize the
types of (hard and soft) constraint violations we consider:

1. obj states how many jobs are unassigned in the solution, i.e. obj =∑
j∈J .χ(j) where χ(j) equals 0 if job j ∈ J is assigned to a nurse, and

1 otherwise. γj equals the number of jobs J .
2. The square of the deviation from the job time windows in minutes (up

a to a maximal deviation MAX), is added to the objective function in term
obtw that is normalized by γtw = MAX.

3. The number of qualification violations is contained in term obq that is
normalized by the number of jobs J .

4. obp counts the number of violations of patient and nurse preferences
and γp equals the number of stated preferences.

5. obd summarizes the deviation of the desired job start time up to 60
minutes, which is also the normalization factor γd.

6. obn reflects the number of working time violations over all nurses accord-
ing to the nurse’s contract and shift regulations. The normalization factor
γn corresponds to the maximal possible working time, 16 hours.

7. The travel time of each nurse to and from her home is represented by obtt
that is normalized by the maximal travel time of 180 minutes.

2.2 Related Work

The home healthcare problem has been considered using different approaches:
Eveborn et al. [8] choose a set-partitioning formulation for the problem, and
primarily focus on the application of repeated matching. Bertels and Fahle [3]
combine linear programming (LP) for computing optimal start times, constraint
programming (CP) for generating initial solutions, and simulated annealing (SA)
and tabu search (TS) based heuristic for subsequent solution improvement. Steeg
and Schröder [15] use CP to construct an initial solution that is improved by

4 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

a combination of Adaptive Large Neighborhood Search(ALNS) and SA. Ras-
mussen et al [13] use a set partitioning formulation of the problem and apply a
specialized branch-and-price solution algorithm.

The main difference of our work to other approaches lies within (1) the novel
consideration of multimodality, (2) our objective to provide a flexible framework
to tackle real-world HHC problems with varying side constraints (3) a novel,
broad selection of metaheuristics for the MHS problem and (4) the excessively
large size of instances that we tackle.

3 Initial Solutions with Constraint Programming

First, we require a valid initial solution, i.e. a solution where all jobs are as-
signed and none of the side constraints presented in Section 2 are violated. This
is particularly challenging for three reasons: first, we cannot apply a simple
construction heuristic, such as a random job-nurse assignment, since many side
constraints have to be considered. Second, the instances are particularly large
(about 700 jobs/500 available nurses). Third, we may only invest little time into
the initial solution generation, since this step is just the first of many steps in
our optimization process.

Constraint Programming(CP) is a particularly attractive candidate for initial
solution generation: first, CP is strong in solving discrete decision problems (i.e.
finding first solutions) [9, 14]. Second, CP search strategies – if set up correctly
— can yield fairly good initial solutions (e.g. favoring low values for job time
variables during search produces tight schedules since job times are set as early
as possible). Third, the CP model can be easily altered to similar problem setups
(of other healthcare companies) by simply editing side constraints, and hence
satisfies our requirement of a flexible, extendable system.

The instances we consider are far too large to be solved within a single CP
model, therefore we simplify the problem by solving each instance qualification-
wise: we create a subinstance Iq for qualification q from instance I, where the
jobs in Iq are those that require qualification q and the nurses are those whose
highest qualification is q. This means we first start solving the instance for the
highest qualification, ‘medical nursing’, that includes all medical nurses and all
jobs that require a medical nurse. Then we continue with the second-highest
qualification, and so on. Note, that in case we cannot solve a subinstance of
qualification q, we iteratively add nurses of higher qualification to the instance.

3.1 The CP Model and CP Search Setup

We formulate the MHS problem as an extension of the Vehicle Routing Problem
with Time Windows (VRPTW) model from [14] that contains three kinds of
variables: (1) predecessor and successor variables, predi and succi of visit i that
capture the sequence of tours, (2) nurse variables ni, stating which nurse per-
forms visit i, and (3) variables for the start time of each visit i, ti. We extend the
model with binary variables xij (xij is 1 if nurse i performs job j) for channeling

Multimodal Homecare Scheduling 5

and add constraints to represent multi-modality, nurse and patient preferences,
shift length as well as redundant constraints to increase propagation.

We apply a static search heuristic, where we first set half of the successor
and predecessor variables (i.e. we start with fixing the job sequence), then set
half of the nurse variables (nurse to job assignments), followed by the remaining
half of predecessor/successor variables and remaining nurses. Finally, we search
for job start times. We order nurses by their start time (nurses available in the
morning come first), and order jobs by their desired start time. This way, search
is extremely effective with an ascending value selection (smallest value first):
typically no more than 10% of the decisions made during search are wrong.

3.2 Iterative Clustering

Decomposing the problem qualification-wise does not yield equally-sized sub-
problems. For instance, jobs of qualification ‘basic homecare’ typically make up
80% of all jobs, yielding again a far too large subproblem. We therefore introduce
another decomposition step that is triggered for particular qualifications or if a
time-limit is reached: decomposition by area.

A cluster consists of a set of jobs and nurses from the overall problem instance.
Finding a feasible cluster, where the underlying instance is solvable (in reasonable
time) is quite challenging, since both vicinity and temporal availabilty are crucial.
In other words, for all jobs within a cluster, we need to find a set of nurses who
can reach the jobs within time (vicinity) and who are available in the jobs’ time
slots (temporal availability). In our approach, we create and solve clusters one
by one, and iteratively alter those clusters that we cannot solve straight away.

Creating Clusters using a Quadtree We reflect the spatial distribution
of jobs by inserting them into a quadtree. A quadtree is a tree datastructure,
whose subtrees have up to four children that, for our purpose, are labelled north,
east, south and west. Each node (and leaf) represents a job. We insert job j into
(sub)tree i (with corresponding job ji) by comparing j and ji’s GPS coordinates:
if j is located to the north of ji, j is inserted into the north child of i, if j is
located to the east of ji, j is inserted into the east child of i, and so on. If the
respective child does not exist, then j becomes the child of ji. In this way, we
insert all jobs into the quadtree, where initially, the root node contains an empty
job with the GPS coordinate of a centre location of Vienna, to assure that the
quadtree is reasonably balanced.

Now we can initiate the selection. First, we select k jobs by k times remov-
ing the first job that we find using a simple depth-first search. In this way, the
k selected jobs are reasonably closely located. Second, we select n nurses with
n = min(k,N) where N represents the number of available nurses for the subin-
stance. We want to find nurses that are reasonably close to the jobs, so we first
randomly selected a job j, then order the nurses by distance to job j and finally
pick the n closest nurses. This way, we retrieve a cluster with k jobs and n nurses.

Iteratively Altering Clusters In our approach we first create a cluster from
a given set of jobs and nurses that are closely located. Second, we invest τk time-

6 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

units to solve that cluster. If we cannot find a solution within τk, we iteratively
simplifying the instance until we find a solution or reach an overall timelimit τ :

1. Given jobs M , nurses N , cluster-timeout τk and overall timeout τ

2. If |M | ≥ 1 and timeout τ has not yet been reached: create cluster c =
(M ′, N ′) where N ′ ⊆ N and M ′ ⊆M , otherwise stop.

3. If timeout τ has not yet been reached: attempt to solve cluster c in τk secs

(a) If solving was successful, update the set of overall jobs M to M −M ′
and the set of overall nurses N to N −N ′ and goto 2.

(b) Otherwise, if |M ′| ≥ 1, remove f(M) jobs from M ′, yielding a new,
smaller cluster c=(M ′′,N ′) and goto 3.

(c) Otherwise, if |N | ≥ 1 add m′ nurses to N ′, yielding a new cluster
c=(M ′,N ′′) and go to 3.

(d) Otherwise, increase τk by t timeunits

In our current setup, we choose k=25, τk=1sec, τ=300secs, t=10secs, f(M)=|M |-
10 if |M | ≥ 10 and |M |-1 otherwise, m′=1. This setup typically produces a valid
solution for a 700jobs/500nurses instance within 15-20 seconds — more details
and experimental results can be found in Section 5. In case we cannot find an
overall solution within τ seconds, the CP approach has failed and we use an
alternative approach, as outlined in Section 3.3.

3.3 Random Solution Generation

As an alternative approach, we employ a simple solution generation heuristic that
produces a random nurse-job assignment. The generated solution only guaran-
tees that all jobs are executed by a nurse of adequate qualification and that all
pre-allocated jobs (such as appraisal interviews) are assigned to the right nurse.
No side constraints, such as time window restrictions are considered. We use this
technique as a backup to the CP approach and to evaluate the influence of the
initial solution during the later improvement phase.

4 Solution Improvement by Different Metaheuristics

A solution to the MHS problem consists of a list of tours—one for each nurse—
where a tour contains a sequence of jobs, or is empty in case the nurse is not
employed for that particular day. We receive such a (valid) initial solution from
the solution generation heuristics discussed in the previous section. However,
these generated solutions are typically of mediocre quality and cannot be used
for real-world rosters. Therefore, we improve the solution with respect to the
objective function (Section 2.1) using different metaheuristics that we discuss in
this section.

Multimodal Homecare Scheduling 7

4.1 Variable Neighborhood Descent

Based on the idea that global optima are locally optimal with respect to all (pos-
sible) neighborhoods, variable neighborhood descent (VND) REFERENZ tries to
systematically examine a predefined set of neighborhood structures Ni, with
1 ≤ i ≤ lmax whereupon lmax denotes the number of defined structures. To
fasten the search, the neighborhood structures are ordered such that potentially
smaller neighborhoods N(x) for a given solution x are examined first. As soon
as a local optimum is reached (within the i-th neighborhood of x), the search
is continued with neighborhood Ni+1(x). If, however, an improvement is found
in the current neighborhood, the further search is continued with neighborhood
structure N1 again.

Within this work, we define three neighborhood structures implicitely via
three different move types:

shift mission A shift mission move shift one mission from one tour to another
tour by searching the best matching position in that other tour.

reposition mission When applying a move of that type, one mission is repo-
sitioned within its tour, i.e. the best matching position (without reordering
the other missions) is determined.

swap nurses By this move, two nurses are swapped with each other, i.e. the
tour of the first nurse is then handled by the second nurse and vice versa.

Although the initial neighborhood order (shift missions, swap nurses, reposi-
tion mission) leads to rapid improvements during the starting phase of VND,
preliminary tests revealed that dynamic neighborhood reordering as applied in
REFERENZ leads to more promising results.

4.2 General Variable Neighborhood Search

One of the major drawbacks of VND is the fact that the search might get stuck
in local optima. To overcome this, VND is typically embedded as local search
phase in a general variable neighborhood search (VNS) scheme REFERENZ.
Here, the basic principle is to first locally improve a given start solution until
a local optimum is reached which in the second step is then randomly changed
by so-called shaking moves, i.e. local random perturbations, trying to emerge
from local optima while at the same time preserving the solution structure since
it is assumed that in most cases local (and global) optima are similar to each
other. To broaden search, the randomness introduced during shaking is enlarged
each time the local search phase (e.g. VND) did not improve the current best
solution.

In our case, shaking is performed by applying i + 1 random shift mission
moves within the i-th consecutive iteration of VNS without improvement.

4.3 A Hybrid Evolutionary Algorithm

Evolutionary algorithms (EA) [11] imitate biological evolution by applying evo-
lutionary mechanisms, such as reproduction, selection, mutation and recombi-
nation, to iteratively derive good solutions from a pool of initial individuals.

8 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

EA Operator Settings

selection binary tournament
recombination list crossover
mutation move all unfixed missions to best other nurse
replacement replace the worst similar solution in the population pool
improvement cyclic search of neighbourhoods

- reorder mission neighbourhood (best of improvement)
- shift mission neighbourhood (best of improvement)
- swap nurse neighbourhood (best of improvement)

Fig. 1. Operator setup for the hybrid Evolutionary Algorithm (MA)

During initialization, a pool of parent solutions is generated, the so-called pop-
ulation. Typically, the initial population has a very high deversity to cover a
large region of search space. From this population, a new population is breeded:
first, a set of candidates is selected from the population following a particular
selection heuristic. Second, these candidates, the parents, are used to create off-
springs by recombination and/or mutation, depending on a specified probabilty.
Recombination is performed by a recombination operator that recombines two
(or more) parent solutions to create an offspring, while mutation alters parts of
the parent. Subsequently, the resulting offspring replaces the parents in the pop-
ulation according to a replacement strategy and thus yields a new generation. In
this manner, the population is contineously evolving until a termination criteria
is reached (e.g. timeout or a generation limit).

In this work we apply a hybrid EA, or Memetic Algorithm (MA) [12], that
uses local search to improve the offsprings before replacement. Since Burke et
al [2] presented promising results for the Nurse Rostering Problem (NRP) with
an MA, we expected similary good results for our problem. In the following we
discuss details about recombination, mutation and local search of our approach.
The overall parameter settings are summarized in Figure 1.

Initialization. We create the initial population based on the solution given from
the initial solution generation heuristic: for each job j, we select the nurse that
has been least often assigned to j in already generated solutions. If there is more
than one such nurse, we pick one randomly. This way, the initial population is
diverse, but may contain solutions that are not valid.

Recombination Operator. Since solutions are lists of tours (one for each nurse),
we implement a special recombination operator: given two parent solutions (P1, P2),
the offspring is initially set to have the same tours as P2. Then one nurse of P1

is selected at random (ni). Each unfixed job of ni assigned in P1 is removed in
the offspring solution. Then every remaining job of ni in the offspring solution
is moved to the best nurse nj , where nj 6= ni. In the final step, the jobs of ni in
P1 are assigned to ni in the offspring solution. This creates one offspring, and
the parent with the lowest objective value is set to P2.

Multimodal Homecare Scheduling 9

Mutation. To provide higher diversity during the search of the MA, the offspring
is mutated by selecting a nurse ni at random and reassigning all unfixed tours
of this nurse to other nurses nj , where nj 6= ni, maximizing the objective value.

Local Search. For a given probability, a local search heuristic tries to further
improve the offspring. To achieve a better balance between exploration and
exploitation, the heuristic aborts after a certain time limit. We apply two lo-
cal search algorithms: variable neighbourhood descent (VND), as described in
Section 4.1, and cyclic search of neighbourhoods (CNS). The best results were
obtained using CNS that searches in the next neighbourhood of a given list of
neighbourhoods: if a neighbourhood cannot improve the solution within a time
limit, the next neighbourhood is selected. If none of the neighbourhoods can
find a better solution, the procedure terminates. The population is replaced us-
ing a slightly changed steady-state approach[XXX], where an offspring always
replaces the most similar solution in the current population that is worse than
the offspring. To calculate the similarity of two solutions, we use a simple count
of same job to nurse assignments.

4.4 Simulated Annealing Hyper-Heuristic (SAHH)

Simulated Annealing (SA) [XXX] is a local search technique that is inspired
by ‘annealing’, a heat treatment of material in metallurgy, where a controlled
heating and cooling process allows atoms to find new positions yielding a config-
uration of (closely) minimal internal energy. Similarly, in Simulated Annealing,
the current solution is replaced by a newly-constructed solution (typically in the
neighborhood of the current solution) by a certain probability. This probability
depends on the solutions’ objective values and the global temperature T . If T is
large, the replacement works almost randomly, while a small T (close to zero)
prefers better solutions, but can risk becoming stuck in local optima. Therefore,
the temperature is gradually altered. A Simulated Annealing Hyper Heuristic
(SAHH) utilizes other local search techniques (low-level heuristics) as a slaves to
improve newly-constructed solutions. Each low-level heurstic has a probability
to be selected for the current iteration. These probabilities are changed during
the search using an adaptive learning approach, where the selection probability
depends on an accept/tested ratio in a predefined learning period.

Bai et al [1] implemented this kind of algorithm for the NRP. As the NRP is
related to our problem, we tested this approach too. According to the definition
of the SAHH by Bai et al [1], the only parameter changes that have to be made
are the used low-level heursitics and the total number of iterations K. As neigh-
bourhoods we use two improvement strategies for each neighbourhood also used
in the VND. First we selected the random-improvement strategy with following
constraint: we only consider solutions, which number of hard constraints viola-
tions are at most the number of violations in the current solution. The second
strategy used is next-improvement.

Bai et al. stated for their parameters that around 10% of the solutions should
be accepted at the beginning and only 0.5% at the end of the search. Therefore

10 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

SAHH Neighbourhood Settings

shift job neighbourhood random improvement
next improvement

swap nurse neighbourhood random improvement
next improvement

reposition job neighbourhood random improvement
next improvement

Fig. 2. SAHH neighbourhoods and parameters

we calculated our starting/ending temperature to accept 10%/0.5% if the value
is 0.5 worse then the current solution.

4.5 Scatter Search

Another population based approach that we evaluate is scatter search [10]. As
described by Burke et. al. [6], this metaheuristic creates also good solutions for
the NRP. Scatter Search uses a small population of diverse solutions and creates
subsets of small size from this pool. These subsets are then combined using a
solution combination method to create new solutions which are then improved
using a local search algorithm.

Initialization. We create the initial population the same way as for the hybrid
EA where we use the solution created by the CP-Solver and create the additional
solutions with a random diverse constructor.

Subset Generation. To generate subsets out of the pool of solutions (also called
reference set or RefSet), a classical subset generation approach was used [10]:
We first create subsets of all pairs of solutions. Next subsets containing of 2-sets
plus the best solution not in the set are created (duplicate subsets are removed).
Then the same for all 3-sets is done. At last, subsets of size k = 5 to the size of
the RefSet containing the k best solutions are creates.

Subset Combination. For the combination of solutions for each subset we im-
plemented a path-relinking algorithm. Path-relinking [10] moves from a solution
Si to Sj where a move is defined by a different assignment of a variable. Unlike
the classic path-relinking approach we do not perform a local search on a given
number of promising solutions but create one solution out of the subset which
will then be improved. To create a solution Snew out of a subset of size l we
decided to move iterativly from the worst solution S1 to the best Sl. Snew = S′l ,
where

S′i = S′i−1 →PR Si, i = 2, ..., l, S′1 = S1

and the path-relinking operator Si →PR Sj moves Si difference(Si, Sj)/l
steps to Sj . To determine which moves are performed first, we calculate the
change in the objective per move and perform the move with the best change

Multimodal Homecare Scheduling 11

(which can also be worse). In order to prevent high runtimes due to a possible
large set of moves to be tested, we restrict the number of moves to be calculated
with a parameter k.

This combination algorithm was introduced after some preliminary testings
with the algorithm described by Burke et al [6]. This tests indicated that the used
’construction by voting’ approach does not fit for our model, as the constructed
solutions where no good starting points for the local search procedure.

5 Computational Results

We assess our hybrid heuristics on a random selection of real-world instances
from 2011 with the same setup. First, we examine the initial solution generation
heuristic and second, we compare the impact of the presented metaheuristics.

5.1 Evaluating Initial Solution Generation

We evaluate initial solution generation on a XXX machine with 4 cores with
2 processes running in parallel, each given a maximum of 4GB RAM (with a
maximal capacity of 12GB RAM). All techniques are implemented within the
same framework in Java and JaCoP[XXX] has been used as constraint solver.
In Table XXX we give results averaged over 10 runs.

5.2 Evaluating Metaheuristics

Each metaheuristic is given a maximum of 75 minutes to improve the initial
solution. The parameter settings of each metaheuristic is summarized in Table 3.

We evaluate our techniques on a XXX machine with 8 cores where 4 processes
are run in parallel, each given a maximum of 4GB RAM (with a maximal capacity
of 24GB RAM). All techniques are implemented within the same framework in
Java, where we use JaCoP[XXX] as a CP solver. In Table XXX we give results
averaged over 10 runs.

6 Conclusions

In this work, we tackle a large-scale real-world Multimodal Homecare Scheduling
(MHS) problem using a CP-based construction heuristic combined with one of
five different metaheuristical approaches. Our contributions are threefold: first,
we show how we can generate valid initial solutions for the MHS in very little
time using a Constraint Programming-based clustering heuristic. Second, we
study the impact of different metaheuristics on a novel problem setup. Third,
and most importantly, this work delivers another success story of how hybrid
approaches can effectively tackle large-scale real-world problems.

For future work, we want to extend our current one-day approach to generate
multi-day solutions, where we also consider shift and working hour constraints
that hold over a longer period of time. Furthermore, we want to explore large
neighborhood search[XXX] as another metaheuristic to tackle the MHS problem.

12 Rendl, Prandtstetter, Hiermann, Puchinger, Raidl

EA Parameter Settings

population size 100
selection size 2
operator probabilities
- recombination 1.0
- mutation 1.0
- improvement 0.01
termination time limit or 2000 iterations without an improvement

SAHH Parameters Settings

K (# iterations) 10000
acceptance prob. (start) 0.05
acceptance prob. (end) 0.005
learn period K/500
nrep (#iter/temp) #neighbourhoods
min weight 0.1
change of temperature t Lundy and Meers’ nonlinear function t = t/(1 + βt),

β = ((tstart − tend) · nrep/K · tstart · tend)

Fig. 3. Parameter settings for each metaheuristic

Acknowledgments This work is part of the project CareLog, partially funded
by the Austrian Federal Ministry for Transport, Innovation and Technology
(BMVIT) within the strategic programme I2VSplus under grant 826153. The
authors thankfully acknowledge the CareLog project partners Verkehrsverbund
Ost-Region GmbH (ITS Vienna Region), Sozial Global AG, and ilogs mobile
software GmbH.

Multimodal Homecare Scheduling 13

References

1. Bai, R., Blazewicz, J., Burke, E.K., Kendall, G., Mccollum, B.: A simulated anneal-
ing hyper-heuristic methodology for flexible decision support. Tech. rep., School of
Computer Science, University of Nottingham, England (2006)

2. Bai, R., Burke, E.K., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary ap-
proach to the nurse rostering problem. IEEE Transactions on Evolutionary Com-
putation 14(4), 580 – 590 (2010)

3. Bertels, S., Fahle, T.: A hybrid setup for a hybrid scenario: combining heuristics
for the home health care problem. Comput. Oper. Res. 33, 2866–2890 (October
2006), http://dl.acm.org/citation.cfm?id=1143203.1143210

4. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i:
Route construction and local search algorithms. Transportation Science 39(1), 104–
118 (2005)

5. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

6. Burke, E.K., Curtois, T., Qu, R., Berghe, G.V.: A scatter search approach to the
nurse rostering problem. Journal of the Operational Research Society 61(11), 1667
– 1679 (2010)

7. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state
of the art of nurse rostering. Journal of Scheduling 7, 441–499 (November 2004),
http://portal.acm.org/citation.cfm?id=1029473.1029477

8. Eveborn, P., Flisberg, P., Ronnqvisb, M.: Laps care - an operational system for
staff planning. European Journal of Operational Research 171, 962–976 (2006)

9. Gent, I., Walsh, T.: Csplib: a benchmark library for constraints. Tech. rep., Tech-
nical report APES-09-1999 (1999), available from http://csplib.cs.strath.ac.uk/. A
shorter version appears in the Proceedings of the 5th International Conference on
Principles and Practices of Constraint Programming (CP-99).

10. Glover, F., Laguna, M., Mart, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 39, 653–684 (2000)

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 1st edn. (1989)

12. Moscato, P.: Memetic algorithms: a short introduction, pp. 219–234. McGraw-Hill
Ltd., UK, Maidenhead, UK, England (1999), http://dl.acm.org/citation.cfm?
id=329055.329078

13. Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew schedul-
ing problem: Preference-based visit clustering and temporal dependencies. Tech.
Rep. 11-2010, DTU Management Engineering (May 2010)

14. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

15. Steeg, J., Schröder, M.: A hybrid approach to solve the periodic home health
care problem. In: Kalcsics, J., Nickel, S. (eds.) Operations Research Proceedings
2007, Operations Research Proceedings, vol. 2007, pp. 297–302. Springer Berlin
Heidelberg (2008)

