
A Variable Neighborhood Search Approach for
the Interdependent Lock Scheduling Problem?

Matthias Prandtstetter??, Ulrike Ritzinger,
Peter Schmidt, and Mario Ruthmair

AIT Austrian Institute of Technology
Mobility Department – Dynamic Transportation Systems

Giefinggasse 2, 1210 Vienna, Austria
{matthias.prandtstetter|ulrike.ritzinger|mario.ruthmair}@ait.ac.at

Abstract. We investigate a so far not examined problem called the In-
terdependent Lock Scheduling Problem. A Variable Neighborhood Search
approach is proposed for finding lock schedules along the Austrian part
of the Danube River in order to minimize the overall ship travel times. In
computational experiments the performance of our approach is assessed
and compared to real-world ship trajectories. Notable improvements can
be achieved. In addition, the number of (empty) lockages can be sig-
nificantly reduced when taking them into account during optimization
without loosing too much of quality in travel time optimization.

Keywords: Interdependent Lock Scheduling Problem, Variable Neigh-
borhood Search

1 Introduction

Inland navigation can be seen as the most efficient means of transport with re-
spect to ecological objectives [3]. In combination with transportation via trucks
and trains it builds a strong overland transportation network. Considering to-
day’s transportation volume and emissions related to (overland) transport in
Europe [7] a shift of transports from trucks towards trains and especially inland
navigation within the next years is highly desired by the European Commis-
sion [6].

Among European inland waterways Rhine and Danube are two of the largest
(and most important) ones. While the Rhine heads North-South, mainly connect-
ing Switzerland, France, the West of Austria, Germany, and the Netherlands, to
the North Sea, the Danube heads West-East, connecting the South of Germany,
Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria, Romania, Moldova, and
the Ukraine, to the Black Sea. In contrast to the Rhine, ships traveling on the

? This work is partially funded by the Austrian Federal Ministry for Transport, In-
novation and Technology (BMVIT) within the strategic programme I2VSplus under
grant 835771 (imFluss).

?? corresponding author

(Austrian part of the) Danube (approx. 350 km) have to pass nine watergates at
power plants used for electricity production. Naturally, these watergates build a
bottleneck in the transportation network as ships have to pass through them to
overcome the height difference caused by retaining the river.

It can be seen in the action plan of the Danube Region Strategy [4, 5] that
only 10%–20% of the potential volume is transported on the Danube. Therefore,
a significant increase in the transport volume will lead to congestion around
watergates [14].

In the Austrian funded project imFluss, the main goal is to revise the cur-
rently applied first-come, first-serve strategy for the scheduling process at water-
gates and investigate the increase of efficiency by applying alternative scheduling
strategies. The slot management is based on an optimization approach which
schedules ships at watergates such that the overall sum of travel times of the
ships is minimized. Furthermore, it allows to reduce congestion at watergates by
providing travel speed advises to the captains. Since ships must traverse mul-
tiple watergates in short distances at the Danube, the interdependence of the
schedules at the watergates has to be considered as well.

Within this paper, we first give a detailed description of the problem domain
and then present a Variable Neighborhood Search (VNS) framework which incor-
porates various Local Search operators. Computational results show the positive
impact of the proposed method on the planning approach, and finally conclusions
sum the work up.

2 Related Work

The Interdependent Lock Scheduling Problem (ILSP), as addressed here, is not
yet defined in the (scientific) literature to the best of our knowledge. However,
various related problem definitions and corresponding solution approaches can
be found in the literature where the most important ones are outlined in this
section. The simplest version of the lock scheduling problem (LSP) optimizes
the traffic flow through a single watergate which consists of a single lock cham-
ber. The objective is to find a schedule involving up- and downstream vessels
which maximizes the traffic flow. In [2], a polynomial-time dynamic program
is proposed to solve this LSP. An extended version of this basic problem is
proposed by Verstichel and Vanden Berghe [13], where multiple parallel lock
chambers with different sizes are available. In addition, they integrate a kind
of packing problem which focuses on the (optimized) placement of ships inside
the lock chamber. They minimize the waiting times of the ships at watergates
as the primary objective, but also consider the minimization of the number of
lockage operations as a secondary goal. Beside heuristics for creating initial so-
lutions, metaheuristic approaches are applied for improving the so far found
solutions. These metaheuristics include a variable neighborhood search (VNS),
a multiple neighborhood search and a composite neighborhood search approach.
In [12], Verstichel proposes an exact approach based on integer linear program-
ming. However, this method has unpredictable (long) runtimes which led to a

Fig. 1. Sketch of the Austrian part of the Danube with marks where watergates are
located. Parts of the river between two watergates (or the state border) are referenced
as sections. c©viadonau and DoRIS (http://www.doris.bmvit.at)

low acceptance by lock masters. While all of these approaches focus on single
watergates only, there are some works which consider the ILSP at the Upper
Mississippi River in USA [9]. However, the focus in this work is not combi-
natorial optimization but an estimation of delays based on traffic volume and
interdependence among watergates. In [11] and [10], the authors investigate var-
ious strategies which are applied in vessel scheduling and report that a shortest
processing time first strategy with fairness constraints is more efficient than the
classical first come, first serve strategy.

3 Problem Description

In the Interdependent Lock Scheduling Problem (ILSP) we are given a set of m
watergates G = {1, . . . ,m}, successively arranged along the river. The river is
divided into sections which are bounded by watergates or national borders, as
it is depicted in Figure 1 for the Austrian part of the Danube. Let S be the set
of ships which is partitioned into ships S+ going upstream and ships S− going
downstream, i.e., S = S+ ∪ S−, S+ ∩ S− = ∅. Each ship s ∈ S has to pass
through one or more successive watergates Gs ⊆ G, either up- or downstream.

Each gate g ∈ G consists of two identical and asynchronously operable lock
chambers which allow the ships to overcome the water level difference when
passing through a watergate. The length of a lock chamber is denoted by κg. A
lockage operation is defined to either fill or empty the lock chamber with water.
The time required for this operation is given by τg. Within a lock chamber ships
are positioned in a row possibly allowing multiple ships to pass through a gate
in a single lockage operation. The ships’ positions in a lock chamber define their
entering and exiting sequence.

The trip of ship s ∈ S starts at a given time and ends when it arrives
at its target position. We assume that there are no planned stops for a ship.
Additionally, information about the ship length ks, the ship type rs, and the
average travel speed vs is available. According to vs and the positions of the
watergates and borders, the travel time for each ship on each river section can
be determined. Whenever a ship arrives at a watergate and takes part in a
lockage operation it requires some time to enter and to exit the lock chamber,
respectively.

In a feasible solution for the ILSP, each ship s ∈ S must be assigned to
exactly one lock chamber position in exactly one lockage operation at each gate
g ∈ Gs, while respecting the following constraints:

– It must be ensured that only upstream going ships s ∈ S+ can be assigned
to a lockage operation in which the lock chamber is filled up with water,
whereas only downstream going ships s′ ∈ S− can be allocated to a lockage
operation emptying a chamber.

– The sum of lengths of all ships assigned to the same lockage operation must
not exceed the length of the lock chamber κg.

Additionally, for each lockage operation a starting time has to be set, based on
the following limitations:

– A simultaneous operation of both lock chambers at a watergate is not pos-
sible. Therefore, previous lockage operations and the corresponding ships’
exiting process have to be finished before the next ships can start their en-
tering process. Only after all ships assigned to the same lockage operation
have finished their entering process, the lockage operation is allowed to start.

– Ships are only allowed to enter (or exit) the lock chamber one after another
because of safety and space limitations at the gates.

– All ships have to arrive at their target position before planning horizon H.

Because of these constraints, waiting times may arise for some of the ships.
The optimization goal of the ILSP is to find a feasible solution such that the
sum of total travel times of all ships is minimized, implicitly minimizing the
sum of waiting times over all ships. As a second weighted term in the objective
function, we optionally consider the minimization of the number of lockage op-
erations since each lockage reduces the amount of water to be used in electricity
production.

4 Solution Representation and Decoding

As mentioned in the previous section, a solution in the ILSP is defined by the
lockage starting times and a unique assignment of each ship s ∈ S to a lock
chamber position in a lockage operation for all watergates Gs. Thus, a solution
can be stored as a three-dimensional array where the first index refers to a
watergate, the second one to a lockage operation at the watergate and the third
one to the position of the ship in the lock chamber. The actual values stored in

this three-dimensional array correspond to the ship ids. This array can be seen
as a relative schedule without actual lockage starting times.

Based on this representation and the instance data we propose a decoding
procedure to compute the corresponding optimal lockage starting times with
respect to minimizing the sum of waiting times. Note that the number of lockage
operations is implicitly given in the array. It can be easily seen that choosing
the earliest possible starting time for each lockage results in a minimal sum of
ship travel times with respect to the current solution. The earliest possible time
for lockage l at watergate g depends on

– the previous lockage at gate g (if it exists),
– all lockages at neighboring gates which have at least one ship assigned which

is also assigned to l and which has to pass the neighboring gate directly
before g, and

– the start times of ships which start their trips in a neighboring section and
are assigned to l.

Based on a relative schedule, a directed dependency graph can be built with
nodes representing lockages and arcs describing a dependency of the lockage
at the head on the lockage at the tail of the arc. In case of feasible relative
schedules this graph has to be acyclic. Then, the starting times for all the lockage
operations can be computed by traversing the dependency graph such that a
node is only processed (i.e., a lockage starting time is set) if all preceding nodes
have already been completed (i.e., starting times of previous lockages at the same
or neighboring watergates have been fixed).

5 First Fit Construction Heuristic

In order to find an initial solution which can be further improved by the Variable
Neighborhood Search framework described in the next section, we present a First
Fit construction heuristic. It basically iterates over all watergate passages of
ships in a chronological order and assigns them to lockages, see Alg. 1 for a
pseudo-code of the approach.

In line 5 it is decided whether a vessel can be added to the (currently) last
lockage operation at the corresponding watergate. This decision includes struc-
tural decisions based on the length of the lock chamber as well as the traveling
direction of the ship. In addition, operational decisions are included such as
the maximum shift in time caused by inclusion of a vessel to a lockage. In our
implementation, additional lockages are added if a lockage will be postponed
more than 30 minutes, which reflects the amount of time needed for filling (or
emptying) a lock chamber.

6 Variable Neighborhood Search Framework

To improve initial solutions we employ a Variable Neighborhood Search (VNS)
framework [8]. As a local search method within VNS we incorporate Variable

Algorithm 1: FirstFitConstruction

1 Q← chronologically ordered queue of watergate passing events
2 while Q 6= ∅ do
3 e← Q.pop()
4 g ← watergate(e)
5 if e can be assigned to the currently last scheduled lockage at g then
6 assign e to last lockage at g
7 else
8 append new lockage(s) at g
9 assign e to now last lockage

10 compute ∀e′ ∈ Q dependent on e new earliest possible lockage times
11 chronologically re-order Q

Neighborhood Descent (VND) [8]. The main idea of VNS and VND is to system-
atically examine different neighborhood structures such that local optima with
respect to single neighborhood structures can be overcome.

6.1 Neighborhood Structures for VND

The neighborhood structures incorporated into our VND implementation are
based on the definition of so-called move operators which are used for (slightly)
modifying a given solution by small local adjustments. As it is possible to decode
a given relative schedule such that lockage starting times are optimal with respect
to the sum of travel times, no neighborhood structures are defined on varying
lockage starting times, cf. Sec. 4. All defined moves work on the relative schedule
only. In the following we describe the used neighborhood structures.

Shift Vessels The main idea of this neighborhood structure is to move one
or more vessels from one lockage to another where the number of ships to be
shifted is an input parameter. For implementation issues we decided to allow only
multiple ships to be moved together if they are assigned to the same lockage. In
general, a shift can only be performed if

– the corresponding watergate stays the same,
– no circular dependencies are introduced in the underlying dependency graph

(cf. Sec. 4), and
– the ships to be shifted fit into the target lock chamber together with all

currently assigned ships.

However, it is not only necessary to decide to which other lockage vessels are
shifted but also at which actual position the ships will be inserted, i.e., the
ordering of the ships in the target lock chamber has to be considered. Note,
however, that the relative order of the shifted ships and the ships in the target
lock chamber do not change.

Based on this definition, the size of this neighborhood can be estimated by
a function linear in the number of lockages per watergate times the maximum
number of vessels concurrently assigned to a lockage.

Swap Vessels As indicated by the name of this neighborhood structure, the
main idea here is to swap the positions and/or lockages of two vessels. Basically,
the same precondition applies as for shift moves. However, a swap of vessels
scheduled for the same lockage is explicitly included in this move type.

The size of a corresponding neighborhood can therefore be estimated to be
quadratic in the number of ships passing a watergate. This implies that on
average neighborhoods based on this structure will be significantly larger than
neighborhoods based on shifting operations.

Remove Empty Lockages Since a Shift Vessel move may result in empty
lockages, it is beneficial to remove them with respect to minimizing the number
of lockages. However, removing a single lockage is in most cases not feasible as
each lock chamber has alternating upstream and downstream lockages. Thus,
we try to remove two lockages at the same time. Therefore, the size of the
neighborhood can be estimated by a function which is quadratic in the number
of empty lockages.

6.2 Neighborhood Structures for VNS

Analogously to VND, several neighborhood structures are defined to be used
within VNS for shaking operations. To keep things simple and fast, we decided
to perform a pre-defined number of random shift moves during the shaking
phase. Currently, four neighborhood structures are defined with neighborhood
structure i performing i random shifts, with i ∈ {1, 2, 3, 4}.

7 Experiments and Computational Results

In order to test the performance of the proposed VNS framework and the ap-
plied neighborhood structures we conducted a set of computational experiments.
For this purpose, we decided to generate a set of test instances which were ex-
tracted from real-world data provided by our project partner viadonau who is
providing the Austrian River Information Services called DoRIS. Via DoRIS we
got anonymized sample data including the trajectories of all vessels for selected
days in the period from August 2013 until April 2014. We selected uniformly
30 days in this period. Since the selected period covers days with both low and
high traffic demand a broad range of situations and especially number of trips
(from 47 up to 151, cf. Tab. 1) has been investigated. Note that there are days
with even more trips along the Austrian Danube. We removed, however, all trips
which did not pass at least one watergate as those trips have no particular in-
fluence on the ILSP. A real-world scenario was simulated by using the start and

Table 1. Results when only minimizing the total travel time (VNS0) and when addi-
tionally minimizing the number of lockages with weight 1000 (VNS1000). Column hist
vs. VNS0 depicts the average relative performance in percent of VNS0 with respect to
historical data. ColumnsVNS0 vs. VNS1000 show the changes in the relevant key per-
formance indicators (total travel time, number of empty lockages, algorithm runtime)
for VNS1000 compared to VNS0.

hist. vs. VNS0 VNS0 vs. VNS1000

instance #trips travel time [%] travel time [%] #lockages [%] #empty [%] runtime [%]

123 2014-01-07 56 -13.50 -0.01 +0.00 +0.00 +3.09
145 2014-02-03 65 -18.21 +0.05 +0.00 -0.44 +41.42
125 2014-01-12 67 -12.68 +0.00 -1.14 -3.75 +5.78
194 2014-02-04 69 -16.21 -0.00 -0.09 -0.62 +12.11
203 2014-03-06 71 -12.70 -0.08 -1.29 -4.81 +11.80
167 2013-12-08 78 -9.38 +0.01 -0.96 -4.00 -11.08
179 2013-12-02 82 -14.02 +0.19 +0.00 +0.05 +15.44
182 2014-01-10 83 -13.49 -0.03 -2.21 -9.55 +2.28
221 2013-11-07 84 -13.01 -0.13 -5.87 -20.54 +11.42
203 2013-09-05 87 -8.73 +0.04 -2.77 -12.63 +32.44
197 2014-03-07 90 -5.87 +0.07 -2.27 -8.23 +1.50
188 2014-02-07 94 -5.55 +0.18 -1.51 -11.32 -17.47
180 2013-12-07 98 -9.82 +0.07 +0.11 +0.26 -9.80
208 2014-01-09 99 -7.45 +0.06 -5.07 -20.29 +11.59
254 2013-10-07 102 -4.17 +0.02 -1.81 -6.61 +14.94
184 2013-11-09 104 -8.50 -0.02 -3.19 -13.26 -1.03
118 2013-08-12 107 -5.62 +0.09 -2.82 -11.73 -9.56
234 2013-09-02 108 -5.82 -0.09 -4.14 -15.16 +11.74
210 2013-10-13 111 -0.08 +0.03 -3.04 -12.30 +12.01
258 2013-12-06 115 -11.58 +0.01 -2.19 -13.08 -9.59
134 2013-08-05 119 -12.14 -0.18 -5.55 -26.40 +27.01
138 2013-08-06 122 -3.33 -0.09 -2.24 -7.52 +12.00
250 2013-10-12 124 -0.81 +0.12 -3.33 -11.60 +21.73
268 2013-10-09 127 +1.89 -0.05 -2.53 -10.26 +7.07
299 2013-09-04 128 -6.19 +0.21 -1.11 -4.50 -13.93
289 2013-12-05 130 -5.10 +0.18 -0.40 -5.16 +42.45
156 2013-08-08 138 -9.26 +0.32 -7.64 -34.21 -13.32
283 2013-10-11 141 +7.56 -0.31 -4.93 -20.05 +18.94
332 2013-09-07 149 +0.47 -0.16 -1.63 -5.82 -6.84
358 2013-09-06 156 +8.52 +0.36 -3.00 -14.56 -9.31

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

5
6

6
5

6
7

6
9

7
1

7
8

8
2

8
3

8
4

8
7

9
0

9
4

9
8

9
9

1
0

2
1

0
4

1
0

7
1

0
8

1
1

1
1

1
5

1
1

9
1

2
2

1
2

4
1

2
7

1
2

8
1

3
0

1
3

8
1

4
1

1
4

9
1

5
6

re
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

number of trips

Avg. travel time VNS0

Fig. 2. Average total travel times (with standard deviations) over 30 runs of VNS0
compared to historical data.

target positions as well as departure times of ships as input. Travel times were
estimated via the method proposed in [1]—an approach which turned out to be
highly accurate. Finally, we compared historic travel times with the output of
our algorithm. All of our tests were performed on a single core of a Intel Xeon
2600 processor with 4GB memory per core (although the average RAM con-
sumption was much below that threshold). In addition, 30 runs were performed
for each test instance and algorithmic setup.

The actual ordering of neighborhood structures in the VND part of the op-
timization process was chosen such that first a shift of one vessel is examined,
followed by a swap of two ships, a shift of two vessels and a shift of three vessels.
Finally, we apply the Remove Empty Lockages neighborhood search. A next
improvement step function was employed for all neighborhood structures.

For the historic data provided via DoRIS we currently only have information
of the ship trajectories but not on the actual lock operations. Therefore, we
decided to compare in a first step the measured total travel time of all ships,
with the estimated total travel time when applying a lock schedule as proposed
by the VNS framework. As the number of lockages for the historic data is not yet
known, we conducted two independent test series where in the first, the number
of lockages was not taken into account (in the further context referred to as
VNS0) while for the second one additional lockage is worth 1000 extra seconds
travel time, i.e., we have chosen a weighting ration of 1:1000 between travel time
and number of lockages (referred to as VNS1000 in the following). In Table 1
the obtained results can be seen in detail.

0.99

1.00

1.01
travel time

0.90

0.95

1.00

1.05 #lockages

0.60

0.75

0.90

1.05

re
la

ti
v
e
 p

e
rf

o
rm

a
n
ce

#empty lockages

0.00

0.50

1.00

1.50

2.00

2.50

5
6

6
5

6
7

6
9

7
1

7
8

8
2

8
3

8
4

8
7

9
0

9
4

9
8

9
9

1
0

2

1
0

4

1
0

7

1
0

8

1
1

1

1
1

5

1
1

9

1
2

2

1
2

4

1
2

7

1
2

8

1
3

0

1
3

8

1
4

1

1
4

9

1
5

6

number of trips

runtime

Fig. 3. Relative comparison between VNS0 and VNS1000. The baseline (dashed line)
represents the performance of VNS0. The average performance of VNS1000 in relation
to VNS0 is plotted together with the standard deviations.

A graphical representation is shown in Figures 2 and 3. While in Figure 2
the relative improvement of the VNS setups with/without respecting the number
of lockages is given, Figure 3 shows the relative performance of VNS1000 with
respect to VNS0. The areas around the averages represent standard deviations.

An improvement with respect to the historic trajectories can be found in
almost all cases. However, for some instances the historic solution could not
be beaten. This can be explained by two simple reasons: first, although the
method for estimating travel times is highly accurate, it might still happen that
travel times are underestimated. Second, the estimation how many ships can
be packed into one lock chamber is highly heuristic and there are situations
where the lockmaster was highly efficient while our heuristic approach decided
that putting two specific ships at the same time in the lock chamber is not
feasible. However, more important is the observation that VNS1000 results—
although having a more complex objective function—in slightly better results
with respect to travel times.

In addition, it can be seen that VNS1000 results in noticeable less empty
lockages which is highly important: Although the objective is to maximize the
traffic flow (i.e. to minimize the travel times) the additional objective of min-
imizing the number of lockages is justified by the fact that the embankment
dams (in Austria) were erected for energy producing reasons. While lockages
with ships can be argued towards an energy supplier, empty lockages are harder
to be explained. Therefore, reducing the number of empty lockages while still

decreasing the overall travel times is highly welcomed. Although the runtimes
of VNS1000 are higher the computation times start at 20 seconds for smaller
instances and range up 5000 seconds for the largest instances.

The relative improvement rates for shifts of single ships, swaps, shift of two
vessels, shifts of three vessels and removing empty lockages are 82%, 37%, 5%,
0.02% and 36%, respectively.

8 Conclusions and Future Research

Within this work, we introduced the Interdependent Lock Scheduling Problem
(ILSP) and provided a Variable Neighborhood Search (VNS) based approach for
solving the ILSP heuristically. While different approaches exist for simpler ver-
sions of lock scheduling problems, the ILSP aims at finding an optimal lock
schedule for multiple watergates along a river like the Danube. The ILSP is—to
our best knowledge – not yet addressed in the academic literature. Based on real-
world data provided by the Austrian waterway administration, we were able to
show that an optimization approach helps in finding lock schedules resulting in
reduced overall ship travel times. Furthermore, the number of (especially empty)
lockages could be reduced without increasing the runtimes considerably. Since
the ILSP is a highly complex problem, further research will include additional as-
pects such as considering fairness according to ship waiting times or considering
a 2D-bin packing for ship placement in lock chambers.

Acknowledgements. We want to thank our project partners viadonau – Öster-

reichische Wasserstraßen-Gesellschaft mbH and Zentralanstalt für Meteorologie und

Geodynamik for providing us valuable insights into meteorological as well as nautical

processes and challenges related to them as well as providing us relevant data.

References

1. Asamer, J., Prandtstetter, M.: Estimating ship travel times on inland waterways.
In: TRB (ed.) TRB Annual Meeting Compendium of Papers. 14-3020 (2014)

2. Coene, S., Spieksma, F.C.R.: The Lockmaster’s problem. In: Caprara, A., Kon-
togiannis, S. (eds.) 11th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems. OpenAccess Series in Informatics
(OASIcs), vol. 20, pp. 27–37. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2011)

3. Dolinsek, M., Hartl, S., Hartl, T., Hintergräber, B., Hofbauer, V., Hrusovsky, M.,
Maierbrugger, G., Matzner, B., Putz, L.M., Sattler, M., Schweighofer, J., Seemann,
L., Simoner, M., Slavicek, D.: Handbuch der Donauschifffahrt. bmvit (2013)

4. European Commission: Action plan accompanying the european union strategy for
the danube region (2010), http://www.danube-region.eu/component/edocman/

action-plan-eusdr-pdf

5. European Commission: European union strategy for danube re-
gion (2010), http://www.danube-region.eu/component/edocman/

communication-of-the-commission-eusdr-pdf

6. European Commission: Roadmap to a single european traffic transport
area – towards a competitive and resource efficient transport system
(2011), http://ec.europa.eu/transport/strategies/doc/2011_white_paper/

white_paper_com(2011)_144_en.pdf

7. European Commission: EU transport in figures: statistical pocketbook 2013. Pub-
lications Office of the European Union (2013)

8. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3), 449–467 (2001)

9. Martinelli, D., Schonfeld, P.: Approximating delays at interdependent locks. Jour-
nal of Waterway, Port, Coastal, and Ocean Engineering 121(6), 300–307 (1995)

10. Ting, C.J., Schonfeld, P.: Efficiency versus fairness in priority control: Waterway
lock case. Journal of Waterway, Port, Coastal, and Ocean Engineering 127(2), 82–
88 (2001)

11. Ting, C.J., Schonfeld, P.: Effects of speed control on tow travel costs. Journal of
Waterway, Port, Coastal, and Ocean Engineering 125(4), 203–206 (1999)

12. Verstichel, J.: The lock scheduling problem. Ph.D. thesis, KU Leuven Faculty of
Engineering Science (2013)

13. Verstichel, J., Vanden Berghe, G.: A late acceptance algorithm for the lock schedul-
ing problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp.
457–478. Physica-Verlag HD (2009)

14. viadonau: Locked-through vessel units (2014), http://www.donauschifffahrt.

info/en/facts_figures/statistics/locked_through_vessel_units/

