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Abstract—Within this paper, we present a flexible and ex-
pandable routing framework capable of finding multi-modal and
inter-modal energy-efficient routes incorporating, among others,
transportation modes such as public transport, electric vehicles,
car-sharing, bike-sharing and walking. In contrast to conventional
trip planning services, the proposed framework can evaluate
routes not only with respect to travel distance or travel time but
also with respect to energy used. In addition, range limitation
by electric vehicles is incorporated into the routing request such
that range-safety can be provided.

I. INTRODUCTION

Research in sustainable and energy efficient mobility is
currently strongly motivated by increasing concerns about
climate change and rising green house gas emissions. Electric
powered mobility (e-mobility) is one of the directions currently
taken in order to address those concerns. The market take-up
of electric powered vehicles is slowed down due to the limited
range of the vehicles and relatively long recharging times.
Addressing those concerns is one of the major challenges of
today’s research in this area. However, the introduction of a
new generation of vehicles can also be seen as opportunity for
achieving sustainable changes in individual mobility behavior.
In this paper we will try to address parts of theses challenges
by proposing multi-modal routing methods taking into account
the limited range of electric powered vehicles and their inte-
gration into a multi-modal traffic system.

Starting in the early 2000s online trip planning services
became more and more available and quickly started to be
an integral part of route planning—especially for private
users. Such online trip planning services typically focus on
computing the shortest and/or fastest route between two points.
Sometimes other objectives like “the most beautiful” route
can be requested. Furthermore, routing services specialized
for other modes of transportation (MOTs) than car are offered
which consider special constraints when planning a trip. E.g. a
route planner for bicycle tours might prefer cycle paths instead
of simply finding the shortest route which might lead over busy
streets. However, to our best knowledge, no (commercial) route
planning services exist which offer to compute intermodal
routes incorporating car, bicycle, public transportation, e-
mobility, car-sharing, bike-sharing, and walking. Obviously,
only a reasonable subset of these MOTs is chosen when
suggesting a route, but—theoretically—all of them could be
used within a single route. In addition, to provide routes
incorporating e-mobility, it is necessary to be able to (a)
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estimate the energy to be used along one specific route and to
(b) compute the most energy-efficient route for a given origin-
destination pair. Among others, both objectives are (major)
goals of the Austrian research project EMPORA.

A. Short overview of the EMPORA project

The EMPORA project brings together Austria’s leading
businesses from the automobile industry, infrastructure tech-
nology, energy supply and research sectors in order to integrate
sub-systems, which are either new or currently in development,
within innovative complete systems for electric mobility in a
user-oriented and internationally coordinated way. The result
is a national system solution, as well as the development and
introduction of new technologies by Austrian companies.

One of the main objectives of the EMPORA project is to
enable customers to integrate electric mobility seamlessly with
other, foremost public mobility modes. Due to the intrinsically
limited autonomous driving range of electric vehicles the
combination of individual transport with public transport is
more important compared to conventionally powered vehicles.
This is achieved by providing users with an information system
on hand held devices such as smart phones that allows them to
plan multi-modal routes combining privately owned vehicles
with public transport and car- and bike-sharing offers. The
system supports pre-trip an on-trip planning and will con-
sider real-time information about the current traffic situation,
weather condition, user position and availability of shared
vehicles and more. Route recommendations will also take into
account user-specific preferences and the system will be able
to learn individual route choices. In a final step the results will
be demonstrated in Austrian cities including various real-world
data sources and modes of transport.

The first step towards this goal was the development of
multi-modal routing algorithms embedded in a flexible and
expandable routing framework that will be presented in this
paper.

B. Structure of the Paper

In the next section we first present the general focus of
this paper and continue in Section III with the presentation
of methods for estimating energy consumption along a route.
Section IV introduces a flexible method for representing multi-
modal maps. Sections V and VI document experiments and
complete the paper with some conclusions.



II. REQUIREMENTS FOR THE TRIP PLANNING SERVICE

Since the goal was to provide a flexible yet efficient,
intermodal trip planning service, the following requirements
were determined:

• Multi-modality, i.e. different modes of transport
(MOTs), have to be supported. In general, this means
that the user should have the possibility to decide for
which MOT a trip should be planned.

• Beside the computation of co-modal routes, i.e. provi-
sion of multiple routes with each incorporating exactly
one MOT, the planning of intermodal trips should be
provided. This means the resulting routes incorporate
a subset of one or several MOTs from all MOTs that
were pre-defined by the user.

• Furthermore, the user should have the possibility to
define, which characteristics a route should comply
to. E.g., when planning a bicycle tour, the user might
be interested in the shortest distance route, the fastest
route or the safest route. In addition, it should be possi-
ble to compute an energy-efficient route for motorized
individual traffic, i.e. a trip which minimizes energy
consumption of electric cars as well as conventional
vehicles (in contrast to fastest or shortest routes).

• All computations performed should be as efficient as
possible, meaning that although the requests by the
users could be relatively complex, responses should be
available in at most few seconds. At the same time, ex-
pansion of the service, e.g. introduction of additional
MOTs or weighting functions, should be possible at
any time—i.e., the system has to be flexible.

• Finally, the system should be independent from a
particular map representation, i.e., maps should be
easily exchangeable.

Based on this list of requirements, it can be seen that the de-
velopment of such a system is a rather complex task including
many uncertainties with respect to future demands.

Let us highlight the requirement to compute energy-
efficient routes: Since the trip planning service shall be capable
of incorporating e-mobility, it is important to address range
anxiety, i.e. the fear of e-car drivers that the power available
in the battery will not suffice to reach the target. In the worst
case, the car could stop somewhere on the track without any
possibility to reload the battery. Having methods for estimating
the energy necessary for a planned trip, including methods for
proposing suitable charging stations—if necessary—a feeling
of security and assurance can be given to the driver and the
acceptance of e-mobility can be increased.

Related Work

Obviously, Dijkstra’s Algorithm [1] for computing shortest
routes in networks forms a basis for developments in the
area of route computations. However, there are many other
algorithms focusing on the computation of paths in networks:
For example, in [2] the authors focus on speed up techniques
for accelerating the computation of single routes. Although
the computation times of individual routes can be significantly

reduced in comparison to previously published work, extra pre-
processing steps are necessary with the disadvantage that (a)
they are rather time-expensive and (b) (unforeseen) changes in
the network (e.g. traffic-dependent closings of roads) cannot
be regarded (due to the pre-processing).

In [3], the authors recently focused on the computation of
multi-modal journeys. In contrast to the classical shortest path
problem, the authors try to incorporate multiple optimization
criteria leading to an approach computing a Pareto set which
is then sorted using an evaluation function originated in fuzzy
logic.

Finally, in [4] route planning for electric vehicles is pre-
sented. In this work, all basic questions with respect to finding
energy-efficient routes are addressed. However, weights of the
arcs in the network (i.e. needed energy for traversing an road
segment) are assumed to be given (and constant). That is, no
traffic dynamics are respected by the proposed approach.

III. COMPUTATION OF ENERGY CONSUMPTION

As outlined in the previous section, it is important to have
methods for estimating the power consumption when trying to
incorporate e-mobility into trip planning services, cf. also [5],
[6], [7]. For this purpose, a (basic) power consumption function
is needed which can be built upon basic energy functions
known from physics. Five main components can be determined
for estimating power consumption in e-cars:

• kinetic energy: Obviously, the energy for gaining the
(maximum) speed is necessary. We know from physics
that this energy is saved in an object of mass m as
kinetic energy Ekin , which can be computed by

Ekin =
1

2
·mv2 (1)

with v being the speed of the object (car).

• potential energy: In addition, potential energy is
stored in each object according to its height. Since
streets are typically not level but incline (either up,
down or both), the energy for raising the car needs to
be spent according to

Epot = mGh (2)

with m being the mass of the object, h being the height
the object is raised and G denoting acceleration due
to gravity.

• drag: Based on the shape of the car and its size, drag
occurs. The energy needed to overcome this drag can
be computed by

Edrag = cWA
1

2
ρv2 · l (3)

where cW denotes the drag coefficient (i.e. the shape
of the car), A is the cross-sectional area (i.e. the size
of the car), ρ corresponds to the density of the air
and v is the current speed of the car. Variable l finally
introduces the length of the route into the formula.

• rolling friction: Depending on tire type and pressure,
the rolling friction needs to be considered, where

Eroll = cRFN · l (4)



corresponds to the energy needed for overcoming the
rolling friction, with cR denoting the rolling resistance
coefficient and FN , the normal force, can be estimated
with FN = mG. Variable l denotes, again, the length
of the route.

• auxiliary consumers: Finally, several auxiliary con-
sumers like air condition, heating, head lights, or radio
have to regarded, as they also reduce the range of an
e-car:

Eaux =
∑
dev

Pdev · t (5)

Here, the generic variable dev denotes an auxiliary
consumer and Pdev the power of dev and t the travel
time along the route.

Obviously, the total energy consumed along a route computes
as the sum over the main components:

Etot = Ekin + Epot + Edrag + Eroll + Eaux (6)

However, be aware that h (used in Epot ) needs to be computed
based on the topography of the route (i.e. all slopes have to be
regarded). In addition, Ekin will be a sum over individual terms
where each term corresponds to a speed profile: E.g., when at
the beginning the car is accelerated to 30 km/h, then slowed
down to 20 km/h, sped up to 40 km/h and then stopped
(0 km/h), we need to compute the kinetic energy necessary
for accelerating to 30 km/h and to accelerate from 20 km/h
to 40 km/h, i.e.

Ekin =
m

2
·
[
(30 km/h)

2

+
(
(40 km/h)

2 − (20 km/h)
2
)]

(7)

for this specific example.

In addition, when using an electric car, there is the possi-
bility to use recuperation for recovering energy when driving
downhill or breaking. Therefore, to be consistent with the
previous example, we need to introduce E−kin denoting the
kinetic energy which could be recovered, e.g.

E−kin =
m

2
·
[(

(20 km/h)
2 − (30 km/h)

2
)

+(−40 km/h)
2
]

(8)

for our example. In addition, the energy recovered due to
downhill roads need to be analogously regarded via a term
E−pot , resulting in

Etot = Ekin − E−kin + Epot − E−pot
+ Edrag + Eroll + Eaux (9)

for expressing the complete energy consumption along a
specific route.

Unfortunately, the efficiency of the drive system of an e-car
is not 100%, meaning that some energy is lost on its way from
the source to the road. This happens mainly due to friction.
According to experimentally determined values provided by
project partners, efficiency for e-cars is on average about 80%
during drive and only 60% during recuperation such that the

expression for estimating the total energy needed along a route
must be extended to

Etot =
Ekin + Epot + Edrag + Eroll + Eaux

0.8
−
(
E−kin + E−pot

)
· 0.6 (10)

However, we have to keep in mind that the superior
goal is to reduce range anxiety. Although—using the above
formulas—it is possible to theoretically estimate the energy
consumption along a route, it is necessary to be on the
safe side. Therefore, two assumptions are made which over-
estimate the total energy consumption. For this purpose, we
first assume that no recuperation is available. This assumption
is essential since strong decelerations reduce the efficiency of
recuperation, i.e. less energy would be recovered. Second, we
assume that the car can instantly accelerate (and decelerate) to
(and from) the maximum speed, leading to an over-estimation
of Edrag .

Please note, that beside the fact that the energy consump-
tion is over-estimated by these two assumptions, we do not
have to consider negative energy weights on the edges (which
could have happened when incorporating recuperation). This
leads to the possibility to apply the well-known Dijkstra’s
algorithm [1] for computing shortest paths in a network with
non-negative edge-weights.

IV. MAP REPRESENTATION

As outlined above, one goal—among others—is to build
a flexible, multi-modal trip planning framework which can be
easily extended. From a theoretical point of view, trip planning
is typically performed on a (directed) network N(D,w) where
D(V,A) represents a digraph, i.e. a directed graph, with V
denoting the set of nodes (or vertices) and A representing the
set of directed edges (arcs). Function w : A → R+

0 assigns a
non-negative weight to each arc in the digraph D. Using such
a setup, Dijkstra’s algorithm [1] for finding shortest routes
in a network can be applied. However, this approach is not
directly capable of considering real-world constraints like turn
restrictions, limited access or multi-modality. Even more, one
can easily think of weight functions ω : A × A → R+

assigning a weight ω(a1, a2) to arc a2 depending on the
previously traversed arc a1. Obviously, this weight function
ω cannot be handled by Dijkstra’s algorithm. Therefore some
(partly straightforward) extensions are necessary when trying
to integrate (all of) these functionalities. In the following, we
will outline the basic ideas applied and highlight some (typical)
pitfalls which occur when performing these tasks.

The first design decision to be made in such a situation is
to decide on the structure of the underlying network: Either
all computations are performed on one annotated network
where each arc represents a physical infrastructure (e.g. a road)
and access restrictions (e.g. which type of vehicle is allowed
to travel along this road) are represented by annotations.
Otherwise, one can introduce a layered network where each
layer of the network corresponds to one possible MOT (e.g.
walking or public transport). In this case, an arc exists in one
layer only if the corresponding MOT is allowed to traverse the
corresponding road.



Ensure: an intermodal, layered network
1: generate walking network;
2: for all MOTs m to be added do
3: for all nodes v of MOT m do
4: find closest node v′ in walking network;
5: if distance between v and v′ ≤ threshold then
6: introduce intermodal arcs (v, v′) and (v′, v);
7: end if
8: end for
9: end for

Fig. 1. Algorithm for building the intermodal layered network.

Fig. 2. Layered network graph. Note that connections between the layers are
available at certain nodes (dotted lines).

To be more flexible, we decided to employ the layered
network approach. To facilitate computing multi-modal routes,
it is necessary to link the different layers with each other.
For this purpose, we decided to use the walking graph as
basis (since each route can only start and end at positions
where walking is allowed). The layers for the other MOTs are
then connected to the basis layer by applying the following
procedure, see also Alg. 1: For each vertex of the newly added
layer, we decide which walking vertex, i.e. a vertex in the
basis layer, is closest. Unless this (closest) walking vertex is
farther away than a pre-defined threshold, we introduce two
intermodal arcs (one in each direction) connecting the walking
vertex with the node of the newly added layer implying that a
change from walking to the current MOT (and vice versa) is
allowed at this position. The weight of these newly introduced
intermodal arcs can be chosen according to their interpretation.
E.g., when an arc represents a change from car to walking, then
the time needed for traversing this arc can incorporate average
time for finding a parking lot. In addition, parking restrictions
or the nonexistent parking space can easily be considered by
adapting the weights on those arcs. A sketch of the resulting
layered network can be seen in Figure 2.

Choosing this layered approach contains several advan-
tages: First, Dijkstra’s algorithm can be directly applied. Sec-
ond, the framework is flexible with respect to adding (and
removing) additional MOTs on the fly (as long as walking is
available). Third, it is possible to incorporate special situations

(a)

(b)

Fig. 3. Network adaptions for handling access restrictions in living streets.
The original network (a) with a restricted access road (shaded) and the
extended network (b) with additional nodes and arcs.

(a)

(b)

Fig. 4. Necessary adaptions for incorporating turning restrictions. In this
example, we assume that for all directions left turns are prohibited.

via the weighting function: E.g., when your car is parked at a
specific location, then a change from walking to your car can
be easily realized by setting the weight of the corresponding
intermodal edge (where your car is parked) to 0, while all
other intermodal edges (from walking to your car) are set to
infinity. Even more, (dynamic) mobility concepts like car- or
bike-sharing can be realized by changing the weight function
according to the availability of vehicles at rental stations.

For incorporating special access restrictions as given in
residential areas (e.g. living streets where only source and
targeted traffic is allowed), we add for each living street
two arcs, where for one only the incoming node and for the
other only the outgoing node is connected with the remaining
network, cf. Fig. 3.

Finally, it is necessary to incorporate turning restrictions.
This can be easily achieved by duplicating nodes for junctions
where turning restrictions are existing: A new vertex is intro-
duced for each outgoing arc (at this junction). Incoming arcs
are now duplicated and connected to all outgoing arcs where
access is permitted, cf. Fig. 4.



Fig. 5. Scheme of a public transportation network.

A. Public Transportation

Beside this general techniques, the public transportation
(PT) network needs a little more attention. In contrast to
(motorized) individual traffic, PT is characterized by the fact
that different lines are interconnected with each other via
common stops. While sometimes changing from one line
to another is possible without changing platforms, in other
situations (longer) walks are necessary for transfer. Therefore,
the PT network consists of several types of vertices and arcs
which can be interpreted as follows, see also Fig. 5: Vertices
can either represent stations, platforms or stops, where stops
are the actual stopping positions of the vehicles and one stop
is serviced by exactly one line. Several stops can be located at
the same platform. One or more platforms result in a station.
For arcs, an analogous concept is applied: Stops of the same
line are directly connected via arcs. Obviously, there are also
arcs between stops and the platform the stops are assigned to.
Finally, arcs are introduced between platforms and the station
they are associated to.

Using this concept, it is possible to model walking
times/distances for transfers between different stops. Please
note however, that based on this principle not all edges within
the PT network correspond to journeys in mass transportation
mediums but some represent walks, escalators, elevators, or
stairs.

B. Weight Functions

As already outlined above, routing is done based on the
multi-modal network(s) as well as the weight function applied
to the arcs. Using dynamic weight functions (dependent on de-
parture time, current traffic situation, current weather condition
(and forecast), current availability of vehicles in sharing sys-
tems, etc.) it is easy to provide (highly) dynamic trip planning
services. However, some weight functions might even be more
complex: For example, the estimation the energy consumption
along an arc in the network is not only dependent on the speed
traveled along this arc but also on the speed traveled on the
previous arc (since de/acceleration has to be regarded). For this
purpose, it is necessary to realize the previously mentioned
weight function ω(a1, a2) such that Dijkstra’s algorithm can
still be applied (which can only correctly handle simple weight
functions). Fortunately, ω(a1, a2) can be easily realized by
transforming the underlying graph such that each node is
replaced by an edge and each edge is replaced by a node.
Obviously, an efficient implementation of this procedure does
not actually need to perform this transformation in advance
but can do this on the fly.

Fig. 6. An intermodal route in Vienna from the Opera into the 5th district.
The involved MOTs are walking (orange) and bike-sharing (cyan).

Furthermore, minimal adaptions are necessary when rout-
ing in a PT network: While for individual transportation each
link can be accessed at any time, PT arcs can only be traversed
whenever a PT vehicle (e.g. bus) is currently operating the
line. Therefore, the travel time for the corresponding edges is
extended such that the (initial) waiting time is contained in the
weight of the first edge.

C. General Route Planning

Equipped with the above presented methods, it is now
possible to compute multi-modal routes incorporating different
modes of transport (MOTs) including electric vehicles. For this
purpose, a user has to define which MOTs are relevant for
her. In addition, the parking spot of the car (or bike) has to be
announced since otherwise a transition to this MOT is not pos-
sible. The finally computed route suggests which MOTs should
actually be used such that the optimal route can be obtained.

Although theoretically possible, there is no energy con-
sumption computation for multi-modal trips. The objective
value to be optimized (during the routing) is in fact a weighted
sum of individual parameters (e.g. travel time, energy con-
sumption when using electric vehicles, distance travelled, etc.).

V. EXPERIMENTS

To highlight the performance of the proposed framework,
we performed some tests on an laptop with an Intel Core2
Duo T9600 (2.8 GHz) CPU and 8 GB RAM. Since the per-
formance of the applied algorithms is dependent on the size
of the underlying graphs, we decided to test the methods on



a small graph covering Vienna with about 64 000 arcs and
a larger network covering the three Austrian states Vienna,
Lower Austria and Burgenland with about 530 000 arcs.

For the smaller graph, it took on average (over 2 000 ran-
domly chosen routes) 43 ms to compute one shortest distance
route, while the computation of one minimum energy route
took about 185 ms. For the larger setup, computation times
raised to 438 ms (shortest distance) and 2 203 ms (minimum
energy route), respectively. Since, however, energy routing uses
the (currently) most complex weight function (incorporating
several dynamic data sources like weather forecast and current
traffic information), it can be concluded that response times of
the system are satisfactory.

Please note, that in this tests Dijkstra’s algorithm was
always executed on the complete graph, i.e., the algorithm was
not terminated as soon as the target node was reached but a
minimum weight route to all nodes in the graph was computed.
This was mainly done, such that the worst case performance
of the framework could be tested.

If applied within a trip planning service, it is most likely
that seldomly requests share the same source and/or destination
point such that a more efficient, bidirectional variant of
Dijkstra’s algorithm can be applied which significantly
improves the runtime performance. The bidirectional variant
searches the minimum weight route simultaneously starting
from the source (looking forward) and the target (looking
backward). As soon as the forward and backward looking
search meets, the minimum weight route is found and the
algorithm can be early terminated. However, computation
times for single routes strongly depend on the distance between
source and target when applying this optimization technique.

To summarize, energy routing is about five times slower
than shortest distance routing. Yet, the performance is con-
vincing having the highly dynamic weight function in mind.
Since the worst case complexity of Dijkstra’s algorithm is
O(n · log(n)), with n being the number of arcs in the network,
the 8-fold increase in edges lead to 10- to 11-fold increase in
calculation time.

In addition, we present an intermodal route through Vienna
in Figure 6, where walking and bike-sharing are incorporated.
Please note, that computation times do not increase when inter-
modality is considered, since the runtime performance solely
depends on the number of edges contained in the network.

Finally, it has to be highlighted that during the 19th ITS
World Congress [8] a prototype incorporating minimum energy
routing developed in the EMPORA project was presented
during a demonstration session. For this purpose, the minimum
energy routing was extensively tested in real-world conditions
(including an integration of the minimum energy routing
procedure in a mobile navigation device) [9].

VI. CONCLUSIONS AND FUTURE WORK

Within this paper, we presented a systematic approach
providing an efficient but yet flexible framework for computing
intermodal routes. Among others, one of the main function-
alities is the provision of energy efficient routes, i.e. routes
minimizing the energy consumption when traveling from A
to B. Using the proposed approach, several rather complex

real-world restrictions can be incorporated into trip planning
such that still the well-known (and efficient) Dijkstra’s algo-
rithm [1] for computing shortest routes in a given network
can be applied. Most importantly, the system can be used for
estimating the energy consumption along a planned route such
that range anxiety arising in connection with e-mobility can
be minimized and range-safety can be provided to the user.

Although the framework is rather comprehensive, several
future topics are still left open to be solved (or included):
For example, the energy computations for routes are based on
a rather basic model. At this time, we do not have had the
opportunity to validate the model via test drives using electric
vehicles since the (detailed) energy values (battery capacities,
etc.) are not open accesible. It is, however, planned to focus
on that topic in the future.

Furthermore, it is of great importance to incorporate behav-
ioral differences between users when planning an intermodal
trip. For some users, it is no option to take a bus (e.g. due to
accessibility) while for others this might be the best option.
Therefore, route choice and mode choice modeling will be
incorporated into the trip planning service. However, such
a functionality can only be provided based on a sufficient
data basis which has to be collected in real-world scenarios
(e.g. by tracking via mobile devices). For this purpose, user
provided data is currently gathered via other research projects
like MyITS [10].

Furthermore, route alternatives need to be offered to the
users such that the acceptance of such a system can be further
improved. E.g., for many users the display of two or three alter-
native routes improves the driving experience since additional
constraints (like shopping destinations or scenic routes) can be
much more easily incorporated during pre-trip planning.
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