
A Dynamic Programming Based Branch-And-Bound Algorithm for the Container
Pre-Marshalling ProblemI

Matthias Prandtstetter

AIT Austrian Institute of Technology, Mobility Department – Dynamic Transportation Systems
Giefinggasse 2, 1210 Vienna, Austria

matthias.prandtstetter@ait.ac.at
phone: +43-50550-6692; fax: +43-50550-6439

Abstract

Nowadays, container terminals play a major role in global transport networks since they act as primary transhipment nodes. To
reduce idle strokes—especially during vessel stowage—it is necessary to re-arrange so-called container bays in the daytime when
little workload occurs. Obviously, re-arrangement plans with a minimal number of container movements are sought. We tackle
the resulting container pre-marshalling problem (PMP) by proposing a novel dynamic programming (DP) approach, which is then
embedded in a branch-and-bound (B&B) framework. In addition, a heuristic version of the resulting DP-based B&B method
is introduced. Comprehensive computational experiments demonstrate the strengths of the proposed methods and emphasize the
applicability of them to (small and medium-sized) real-world instances.

Keywords: Combinatorial Optimization, Dynamic Programming, Branch-And-Bound, Logistics, Pre-Marshalling Problem

1. Introduction

In the last century, containers have emerged as the standard
transportation unit for various types of goods, e.g. furniture,
cartons of cigarettes, etc. Most of the employed containers
comply with ISO 668, which mainly defines two types of con-
tainers: 20ft and 40ft long containers. Originally introduced
to facilitate the stowing process of vessels, there are nowadays
transport vehicles for road and railway as well. So-called con-
tainer terminals providing transshipment equipment are used as
intermediate and interchange points along an intermodal route.
Additionally, it is often necessary that containers are temporar-
ily stored in the terminals since perfect synchronization be-
tween different modes along an intermodal cargo route is in
most cases not possible. Due to the standardization of the con-
tainers and to reduce the occupied space in the terminal, con-
tainers are usually stacked on each other. Multiple stacks, com-
piled next to each other, are referred to as bay. Multiple bays
form the complete container stockyard, cf. Fig. 1.

Obviously, this arrangement of containers in terminals leads
to unavoidable reorganizations since the sequence of in- and
outbound containers are mostly not known a priori or at least
only short before (direct) access to the containers will be nec-
essary. Two different types of equipment can be used for this
required reorganization processes: reach stackers, see Fig. 2a,

IThis work is partially funded by the Austrian Federal Ministry for Trans-
port, Innovation and Technology (BMVIT) within the strategic programme
I2VSplus under grant 831736 (TRIUMPH).

Email address: matthias.prandtstetter@ait.ac.at (Matthias
Prandtstetter)

Figure 1: A schematic illustration of a container terminal. Con-
tainers are stacked on each other. Multiple container stacks
form a so-called container bay.

which are independent wheeled vehicles able to access only the
topmost container of the outermost stacks in a bay, and gantry
cranes, see Fig. 2b, which have access to the topmost contain-
ers of stacks only. For a more detailed description of container
terminals, tools and vehicles employed as well as related pro-
cesses we refer to [1, 2, 3].

To be able to face competition, it is important for seaport
container terminal operators to keep the loading times of ships
as short as possible. Therefore, it is convenient that during
unproductive times in terms of loading operations, reorganiza-
tion operations are performed such that the containers can be
directly loaded into the vessel according to the desired orders
imposed by the shipping company owners. However, to keep
the reorganization workload as low as possible, it is demanded
to find a work plan which consists of a minimized number of
container movements.

Preprint submitted to European Journal of Operational Research May 28, 2013

(a) (b)

Figure 2: A gantry crane (b) and a reach stacker (a).

The main goal of the container pre-marshalling problem [4]
(PMP) as examined within this paper is the forward-looking re-
ordering of containers in a bay by using the gantry crane such
that during vessel stowage no additional relocations are neces-
sary. Although the restriction to one bay only as well as the sole
employment of the gantry crane seems to be counter-intuitive at
a first glance, it turns out that inter-bay movements for gantry
cranes are rather time-consuming while intra-bay movements
are assumed to be fast (and constant). The applicability for
reach stackers, on the other hand, is limited to outermost stacks
only. Therefore, it is not possible to efficiently re-shuffle con-
tainers in the interior of a bay via reach stackers only. Hence,
terminal operators normally decide that re-shuffles between
bays are not desired. Nevertheless, the number of relocations
to reach a final bay layout should be kept as low as possible.

Within this paper, we focus on the pre-marshalling problem
as it is classically defined, i.e. intra-bay operations performed
by a gantry crane are solely looked at. Although a lot of papers
have already been published focusing on the pre-marshalling
problem, our paper is the first one presenting a dynamic pro-
gramming approach embedded in a branch-and-bound algo-
rithm such that optimal work plans for small and medium-sized
real-world instances can be provided within short computation
times. In addition, a short summary on the complexity of the
problem is given.

The rest of the paper is organized as follows: First we give
a (more) formal description of the problem (Sec. 2) and outline
related work (Sec. 3). Afterward, the computational complex-
ity is examined (Sec. 4) followed by a novel dynamic program-
ming approach (Sec. 5) which is then extended for use within
a branch-and-bound algorithm (Sec. 6) as well as a heuristic
method (Sec. 7). Finally, computational results are provided
(Sec. 8) and conclusions are drawn (Sec. 9).

2. Formal Description

We are given a set of containers with each container c hav-
ing a priority pc ∈ N assigned which indicates the aimed order
during vessel stowage. The smaller pc, for c ∈ C, the higher
is the priority of the container, i.e. the earlier the container will
be stowed into a vessel. Please note, that two containers may
have the same priority, meaning that no actual ordering between

these containers is necessary. This might, for example, apply
for containers which are empty and therefore are interchange-
able. Since only the priorities of the containers are of relevance,
we define without loss of generality C = {1, . . . ,C} which is an
ordered multiset of all container priorities. Therefore, we will
write c instead of pc in the further context. We denote by m(c)
the multiplicity of container priority c, i.e. the number of con-
tainers with priority c. The cardinality |C| corresponds to the
number of all considered containers.

In addition, we are given a container bay of w (container)
stacks. We denote by a stack state s an h-tuple s = (c1, . . . , ch) ∈
Ch where h is the maximal possible number of containers
stacked on each other. With ms(c) we denote the number of
containers of priority c in stack s. Further, we write ci = 0 if no
container is stored at location i, with 1 ≤ i ≤ h.

A stack state s = (c1, . . . , ch) is said to be valid, iff

ms(c) ≤ m(c), for all c ∈ C, (1)
ci = 0⇒ ci+1 = 0, for 1 ≤ i < h (2)

That is, we require that no priority occurs more often than al-
lowed (1) and that each container may only be placed on an-
other existing container (or the ground), cf. (2).

Analogously, we define a bay state B as the set of current
stack states, for each stack in the bay. Therefore, we call a bay
state B = {s1, . . . , sw} valid, iff

s is valid, for all s ∈ B (3)∑
s∈B

ms(c) = m(c), for all c ∈ C (4)

So, a bay state is valid if (and only if) it contains only valid
stack states (3), no container is stored twice and all containers
are stored in the bay (4). By c j

i we denote the i-th container in
stack state s j = (c j

1, . . . , c
j
h).

Let us further define a perfect stack state as a stack state
which is valid and fulfills

ci ≥ ci+1, for 1 ≤ i < h (5)

That is, containers with higher priority are not blocked by con-
tainers with lower priority. However, containers of same prior-
ity may be stacked on each other. Analogously, a perfect bay
state is a bay state for which all stack states are perfect.

For the pre-marshalling problem (PMP), we are given the fol-
lowing situation: At the beginning, a bay state is given which
is not perfect. Therefore, container relocations are performed
(during idle times) such that a perfect bay state is obtained.
However, we are not interested in finding one possible sequence
of container movements leading to a perfect bay state but in
finding a minimal sequence of container relocations.

Therefore, we define a container relocation r = (i, j) as the
movement of the topmost container on stack si to the top of
stack s j. A move is said to be valid iff ci

1 , 0 and c j
h = 0,

i.e., at least one container is stored at stack i and the number of
containers stored in stack j is less than the maximum height.

A solution σ = (r1, . . . , rm) to our problem is an m-tuple of
valid moves such that after applying the m moves to the initial

2

bay layout a perfect bay layout is reached. An optimal solution
σ∗ = (r1, . . . , rm∗) to our problem is a solution such that m∗ ≤ m
holds for all possible solutions σ.

3. Related Work

Several (real-world) variants of the problem have been dis-
cussed in the literature. Common to all variants is that only
gantry cranes are employed for the relocation operations of con-
tainers. However, the related work can be mainly divided in
two areas: First, the container (or blocks) relocation problem
(CRP), where the containers are relocated during the stowing
process. And second, the container pre-marshalling problem
(PMP), where all relocation operations are performed before
the stowing process starts.

Caserta, Voß and Sniedovich [5] provide a dynamic program-
ming (DP) model for solving the CRP. However, their goal is
not to solve the CRP to optimality by means of DP but to incor-
porate the DP model into a corridor method which is done via
the definition of constraints on the moves to be further exam-
ined by the DP approach. Computational experiments show that
this approach outperforms previously published approaches in
terms of necessary container relocations while the computation
times are rather identical.

In [6], Forster and Bortfeldt introduce a method for comput-
ing slightly improved lower bounds on the number of container
relocations which is then incorporated into a tree search proce-
dure for the CRP. Comparisons with other existing approaches
are performed showing that the average number of container re-
locations can be reduced while the computation times are kept
short.

In their work, Lee and Hsu [7] formulate the PMP as multi-
commodity flow problem with additional side-constraints. An
integer linear programming (ILP) formulation is presented to-
gether with heuristic solution methods to tackle this hard ILP
model. However, computational results show that this approach
is not applicable for real-world instances. Although it could be
shown that the definition of target layouts improves the solution
process, it has to be emphasized that for real-world applications
a multitude of valid end states exist. To decide which of those
can be reached with the overall minimum number of container
relocations is an optimization problem for itself.

In [8], Caserta and Voß present a corridor method-based al-
gorithm for the PMP. Analogously to [5] the search space is
pruned by defining constraints on the options to be further ex-
amined.

A neighborhood search based method for the PMP is pre-
sented by Lee and Chao in [4]. The method proposed can be
divided into two sub-routines: The first one focuses on the re-
duction of blocking and misplaced containers using neighbor-
hood search. The second sub-routing tries to reduce the num-
ber of container relocations incorporating a binary integer pro-
gram to reach the targeted layouts computed during the first
sub-routine. In contrast to all other approaches presented, the
authors highlight that in some cases blocking containers might
be acceptable, if reaching a perfect layout incorporates much
more container relocations.

In [9], the authors present a greedy heuristic for the PMP
which follows the idea to (optimally) place containers with
low priorities first such that during later relocations they do
not block containers with higher priorities. In addition, an
A*-search is outlined. Computational results are presented for
problem instances found in literature as well as instances gener-
ated with the instance generator presented within that paper. Al-
though the results are promising, no detailed comparisons with
other approaches are carried out.

Huang and Lin [10] present heuristic methods for the PMP
as examined within this paper as well as an interesting vari-
ant where the containers need to be sorted such that they are
finally located in predefined cells or regions of the container
bay/terminal. The heuristics proposed (for both variants) are
following the simple idea that perfect stacks of containers are
created where all available slots are occupied by a container
such that ample space is available for re-arranging not perfect
stacks. Computational experiments are only performed on a
very small set of selected instances such that the potential of
this approach cannot be fully determined.

Finally, Bortfeldt and Forster [11] define for the PMP bad-
bad, bad-good, good-bad and good-good moves, which indi-
cate whether a blocking or non-blocking container, i.e. a con-
tainer with lower priority is stacked on a container with higher
priority or vice versa, is relocated such that the container be-
comes blocking or non-blocking. Building on this concept a
methodology for computing (tight) lower bounds as well as a
tree search procedure is developed. Although computational
results provided in [11] highlight the dominance of this method
compared to other leading methodologies the results presented
have to be handled with care since detailed examinations re-
vealed that the amount of available slots for re-shuffling differ
between the methods presented in that paper and other so far
published approaches. Therefore, it was also not possible to
compare our approaches with those of Bortfeldt and Forster.

4. Statement on the Complexity

Although the container pre-marshalling problem as well as
the blocks relocation problem have been extensively studied
both from the practical and theoretical point of view no con-
crete statements on the complexity of the related problem vari-
ants can be found in the literature. Gupta and Nau [12] showed
in their paper that the well-known blocks-world planning prob-
lem is NP-hard (but no worse) in the general case (where—in
terms of the PMP—an unlimited number of stacks is available)
as well as in a version where the number of stacks is limited—
but unlimited in height (referred to as LBW in the following).
Now, let us assume the PMP would be polynomial. Then LBW
could be solved in polynomial time as well by simply solving
a PMP instance with the stack height being limited to n (with
n being the number of containers/blocks). Thus, the PMP is at
leastNP-hard. However, the PMP is not harder since a solution
(which is a sequence of moves) can be checked on validity in
polynomial time by first subsequently applying the moves and
finally checking the perfectness of the reached bay layout.

3

(a) (b) (c)

Figure 3: Two equivalent states are shown in (a) and (b). In (c),
a bay layout is presented where at least one container in C (gray
containers) has to be relocated for reaching a perfect layout.

However, keep in mind that in most container terminals a
real-world variant of the PMP arises which requires containers
to be stowed into vessels during marshalling (cf. container re-
location problem). Simultaneously, additional containers may
arrive which have to be stored in the bay. The resulting vari-
ant is equivalent to the (theoretical) problem described in [13]
where an unsorted sequence of integers is sorted using com-
plete networks of stacks. In [13], it is, however, shown that this
problem is NP-hard as well.

5. Dynamic Program

Based on the principle of optimality (“An optimal policy has
the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.”) stated
by Bellman [14] dynamic programming (DP) divides a given
problem instance into interdependent subproblems whose solu-
tions are merged such that a solution to the original problem
statement can be achieved. For this purpose, it is convenient
to define DP states such that each DP state is either trivial to
solve or it has one or more derived DP states whose solutions
are a decision basis for finding an optimal solution to the cur-
rent DP state. In the resulting DP state tree it is often possible to
identify sub-problems which are equivalent to each other (e.g.
same (number) of decision variables included) but evaluate dif-
ferently due to prior made decisions (e.g. actual values of those
decision variables). In that case, only those subproblems are
further regarded whose evaluation value is optimal. By this op-
eration the DP state tree is pruned and therefore the search is
accelerated. For our given problem DP states can be intuitively
defined based on bay states, i.e., each DP state corresponds to a
(unique) bay state.

5.1. Equivalence of DP States

As already outlined above, equivalent DP states need only
be examined once, leading to the fact that whenever a state is
reached for a second time, further search can be terminated in
that branch of the DP tree. Therefore, it is important to define
necessary and sufficient conditions for determining whether or
not two DP states are equivalent.

For this purpose, let us define multiset C, which contains all
containers of the bay which are judged to be most likely not to
be moved again by using a simple heuristic. I.e., it is assumed
that the containers in C are already placed at their final location.
Having a closer look at Figure 3c, it turns out that in some cases
some containers in C (gray containers) have to be moved as well
for reaching a perfect bay state. Nevertheless, C can be used as
hash function for determining whether or not two DP states are
equivalent, cf. Eq. (7).

c j
i ∈ C if

mC(c j
i + 1) = m(c j

i + 1),
i = 1 ∨ c j

i−1 ∈ C
for

2 ≤ i ≤ h,
1 ≤ j ≤ w

(6)

That is, a container is element of C if all containers of lower pri-
ority are contained in C and the container itself is either placed
directly on the ground or on a container in C of priority at least
as low as its own priority. Now let us specify the datastructures
used for representing a DP state:

• A stack is represented as an array of length h, where index
0 corresponds to the lowest container location in the stack.

• For each stack two integers are given. The first one (s)
indicating the number of containers placed in this stack
being member of set C and the second one (s̃) indicating
the number of empty spaces.

• The bay is represented by an array of stacks, i.e. an ar-
ray of length w. Since the ordering of stacks is irrelevant
for determining whether two DP states are equivalent, the
stacks in the array are ordered such that for two stacks si,
s j with si stored at a lower index than s j, si ≥ s j holds. If
si = s j, s̃i ≤ s̃ j has to be true. If furthermore s̃i = s̃ j, then
ci

1 < c j
1, i.e., the priority of the lowest container in the left

stack is higher than the priority of the lowest container in
the right stack. However, if ci

1 = c j
1, we iteratively con-

tinue with ci
k and c j

k, 2 ≤ k ≤ h − s̃i until a decision can be
made. If, however, no decision can be made an arbitrary
order can be chosen.

• Due to this ordering of stacks, a mapping is necessary
which maps the actual stack index to the original stack in-
dex. Using this mapping, at each point in time the physical
bay layout can be reproduced which is finally necessary
for presenting the obtained solution to warehousemen.

• Furthermore, it is necessary, to keep track of how many
moves have already been applied for reaching the current
state. Therefore, the number of container relocations is
stored in a counter variable.

• Finally, to be able to reproduce the complete sequence of
moves, for each DP state its parent DP state and the move
necessary to reach the current DP state from the parent DP
state is stored.

4

Two DP states B and B′ are then said to be equivalent if

si = s′i , for 1 ≤ i ≤ w (7)

s̃i = s̃′i , for 1 ≤ i ≤ w (8)

ci
k = c

′i
k , for 1 ≤ i ≤ w, 1 ≤ k ≤ h − s̃i (9)

In other words, this means that two DP states are equivalent
when for each stack (ordered according to the procedure de-
scribed above) the number of containers in C, the empty spaces
and all containers including their actual position are equal, for
an example see Fig. 3a and 3b. Among two (or more) equiva-
lent DP states, the one that can be reached via fewer moves is
further investigated. If two (or more) DP states need the same
number of moves, either of them can be kept while all others
are disregarded.

Now let us examine in more detail why two DP states B
and B′ fulfilling requirements (7)–(9) are actually equivalent.
While Equations (8) and (9) are obvious, Equation (7) needs
some clarification. Although this equation is included in Equa-
tion (9), it can be used for determining non-equivalence of two
states more efficiently, since if si , s′i Equation (9) cannot hold
either.

5.2. Generation of DP States

The DP states building the next level in the DP tree are de-
rived from the current DP states in a straightforward way. In
fact, all possible successors are created by applying all possi-
ble, i.e. valid, moves to the current state. Please note, that even
those moves relocating a container contained in C are exam-
ined since one can find examples where a relocations of those
containers is necessary as well, cf. Fig. 3c.

5.3. Strategy for Finding Equivalent DP States

Let us assume the following example: Given a bay state B
and a move sequence Σ = ((1, 2) , (2, 1)). Obviously, bay state
B′ ←Σ B derived by applying Σ is equivalent to B (since one
container is moved from stack 1 to stack 2 and immediately
back again). However, the number of moves is different. It
is now the question, how it is possible to efficiently determine
whether another equivalent state was already reached. Since the
number of moves is the main objective of the PMP, it is neces-
sary that at no time a state B′ equivalent to B is reached after B
where the number of moves for B′ is lower than the number of
moves for B. For this purpose, we create DP states by increas-
ing number of moves. That is, a list of DP states is necessary
which is ordered by increasing number of moves. New states
are then generated always by removing the first DP state from
the list and inserting the newly created states according to their
corresponding number of moves.

Since this approach is straightforward, it suffers from the fact
that many states are created which do not contribute to the fur-
ther search. Furthermore, all of these states have to be stored
such that during the later search it can be determined that a
state has already been examined leading to inefficient memory
and computation time performance.

Algorithm 1: DPBnB
Data: priority queue Q (empty in the beginning; ordered

by the minimum number of moves necessary for
reaching a perfect layout)

s∗ so far best solution
UB upper bound
moves(s) computes the number of moves necessary to
reach s plus the lower bound on moves for reaching a
perfect state

1 begin
2 add the initial state to Q;
3 s∗ ← by a (greedy) heuristic;
4 UB← number of moves to reach s∗;
5 while Q is not empty do
6 s← pop(Q);
7 if moves(s) < UB then
8 foreach state s′ based on s do
9 if s′ is perfect and the number of moves to

reach s′ < UB then
10 s∗ ← s′;
11 UB← number of moves to reach s∗;
12 else if moves(s′) < UB then
13 push(Q, s′); // if equivalent

state is existing, keep only

that state which is reachable

with fewer moves

14 return s∗;

6. DP-based Branch-And-Bound

While dynamic programming is a method primarily based
on the idea to divide a given problem into interdependent sub-
problems, branch-and-bound (B&B) is a general method based
on the divide-and-conquer principle for cutting off unpromis-
ing branches in a decision tree. The main difference between
DP and divide-and-conquer is that for the latter the subprob-
lems created can be independent of each other. However, since
both methods are limited enumeration methods, they can be
intertwined such that for example the DP tree can be further
pruned [15].

The main disadvantage of the DP presented in Section 5 is
that the number of states to be examined is increasing extremely
fast with the number of necessary moves. While the presented
DP follows the idea to create all states reachable by i + 1 moves
based on a state reachable with i moves, it is necessary to ex-
plore all possible states reachable with i moves before states
reachable with i + 1 moves can be examined. However, it turns
out, that most of the states reachable with i moves are not con-
tributing to the final (optimal) solution. Therefore, the goal is
to generate states which are most likely to be contributing to
the final solution only. However, it is not easy to pre-estimate
which states are promising and which are not.

5

This is where B&B comes in. B&B is based on the idea that
for a minimization problem (as given in our case) it is possible
to define for each node in the search tree a (global) upper and a
(local) lower bound. These two bounds are then used for decid-
ing whether subtrees of the current state are to be further inves-
tigated. While in our case the upper bound corresponds to the
length of a valid solution (i.e. the so far best known solution for
reaching a perfect bay state) the lower bound gives an estimate
on how many moves are at least necessary to reach a perfect bay
state starting from the current bay layout. As soon as the lower
bound plus the number of moves already used for reaching the
current bay layout is at least as high as the upper bound, no bet-
ter solution than the incumbent can be found within the current
subtree of the search tree. Therefore, the current subtree can be
cut off, cf. Alg. 1. Applying this idea straightforwardly to the
search tree defined by the DP in Section 5 only a few adaptions
are necessary:

• While in the pure DP all states emerging from the current
state are created, in our case only states are created (and
added to the queue) for which the (theoretically) reachable
number of moves is lower than the current best solution.

• Whenever a state is opened for detailed exploration (i.e.
generation of substates) it is checked whether the (theoret-
ically) best reachable solution is still better than the current
best solution (since the state was originally created, a new
incumbent could have been found).

• Finally, the order used for examining the states is based on
the lower bound, i.e., states closer to a perfect bay layout
are examined first.

6.1. Bound Computations and Initialization
To benefit from the lower and upper bounds, it is crucial to

provide (good) methods for obtaining them. While as upper
bound any valid solution can be used, the lower bound needs
to be approximated. For this purpose, we implemented the ap-
proach presented in [11] for which preliminary tests revealed
that bounds provided by this method are relatively tight—
especially for small but yet real-world instances.

For initializing the upper bound (and the algorithm as well)
we adapted the lowest priority first heuristic (LPFH) presented
in [9]. For limiting the multistart heuristic, we kept the limit on
the total number of iterations but changed the method how to
handle the number of iterations without improvements. Since
we noticed that a fixed number of iterations without improve-
ment (as stopping criterion) is not promising for instances
strongly varying in their size, we employ the following stop-
ping criterion (in addition to the limit on the maximum number
of iterations): Whenever the expression

#solutions · #iterations
iterationlimit

≥ 1 (10)

becomes true, we stop the search for an initial solution. Here,
#solutions corresponds to the number of solutions found so far,
#iterations corresponds to the number of iterations already per-
formed and iterationlimit indicates the limit on the number of

total iterations. The reasoning behind this stopping criterion is,
that in cases where a vast amount of solutions can be found by
LPFH, the initialization process can be stopped early to save
computation time. If, however, only a few (or no) solutions can
be found, the search is prolonged such that at least one or two
solutions can be provided.

Furthermore, we extended LPFH such that not only the best
found solution is returned but all solutions which were identi-
fied during search. This way, it is possible to pre-initialize the
DP-based B&B algorithm such that not only the initial state is
added to the processing queue but all intermediate states (lead-
ing to a perfect layout) obtained during LPFH search. Since
the B&B algorithm first examines DP states close to perfect
layouts, this initialization procedure leads to exploring states
close to solutions before continuing with states close to the
initial state. Obviously, it can be expected, that this modus
operandi leads faster to promising solutions than a sole unini-
tialized B&B approach.

7. DP-based Heuristic

Although the branch-and-bound algorithm presented in the
previous section strictly limits the number of DP states exam-
ined, the overall number of states might still be very large. Ob-
viously, this leads to long computation times. To reduce the
number of states, a heuristic procedure can be provided for de-
termining whether or not two DP states are equivalent, leading
to a decreased number of DP states to look at. For this pur-
pose, the ordering of stacks as presented in Section 5.1 has to
be slightly modified such that for two stacks si, s j with si stored
at a lower index than s j, si ≥ s j holds. If si = s j, s̃i ≤ s̃ j has
to be true. If furthermore s̃i = s̃ j, then ci

si+1 < c j
s j+1, i.e. the

priority of the lowest container in the left stack being not in set
C is higher than the priority of the lowest container in the right
stack being not in set C. However, if ci

si+1 = c j
s j+1, we iteratively

continue with ci
si+k and c j

s j+k, 2 ≤ k < h− si − s̃i until a decision
can be made. If no decision can be made an arbitrary order can
be chosen.

This leads to the observation that two states are said the be
equivalent iff

si = s′i , for 1 ≤ i ≤ w (11)

s̃i = s̃′i , for 1 ≤ i ≤ w (12)

ci
si+k = c

′i
si+k, for 1 ≤ i ≤ w, 1 ≤ k ≤ h − si − s̃i (13)

These equivalence rules are based on the reasoning that ele-
ments being member of C are already perfectly placed and re-
locations of them will occur only in rare situations. However,
please note that for crowded bays this method cannot find an
(optimal) solution, cf. Fig. 3c.

8. Computational Results

To evaluate the performance of the proposed method, com-
prehensive computational experiments have been performed.

6

Table 1: Number of instances for which the algorithm reaches the optimum (opt), the best known value (best) and no valid solution
at all (none) for the bays of dimensions 4x4, 4x7 and 4x10 (dims) and utilization rates 50%, 75% and 100% (util) within either 600
seconds or 3600 seconds available computation time.

di
m

s heur600 heur3600 iDPBnB600 iDPBnB3600 DPBnB600 DPBnB3600

util opt best none opt best none opt best none opt best none opt best none opt best none

4
×

4 050 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0
075 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0
100 272 317 14 297 368 12 270 316 14 297 364 12 229 257 34 265 316 30

4
×

7 050 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0
075 399 399 0 399 399 0 399 399 0 399 399 0 397 397 0 398 398 0
100 153 234 75 177 347 8 147 220 73 187 349 7 129 187 86 183 346 9

4
×

10 050 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0 400 400 0
075 360 371 0 364 374 0 362 373 0 362 373 0 378 390 0 380 392 0
100 66 232 102 70 283 91 65 227 102 74 285 92 65 237 102 71 288 92

Figure 4: Histogram of runtimes with class width 120s for all
instances of dimensions 4 × 10.

For this purpose, the algorithms were implemented in Java 7
and all tests were carried out on a single core of an Intel R©

Core
TM

2 Quad CPU Q9300 with 2.50GHz. Although 3GB
RAM were available for each core only a fraction of this was
used by the proposed methods.

Since there is no set of standard benchmark instances yet es-
tablished for the PMP we performed our experiments on in-
stances available at [16], where the instance generator presented
in [9] can be found as well. Unfortunately, the instances used
in [9] are not available for download. Comparisons to other
approaches were unfortunately not possible since either the in-
stances were not available or the results reported in other works
are not meaningful for detailed comparisons (e.g. varying stack
heights for the same sets of instances, cf. Sec. 3, etc.).

The instances available at [16] can be clustered according
to the following categories: In total there are 3600 instances,
where 1200 are sized 4 × 4, 1200 4 × 7 and 1200 4 × 10. That
is, they consists of bays with width 4, 7 and 10, respectively,

and stack height 4. All of these instances can be further divided
into 3 sets of 50%, 75% and 100% utilization rate—meaning
that x% (x ∈ {50, 75, 100}) of all available slots are occupied by
a container. The resulting 9 sets consist of 400 instances each.
For all instances, the maximum stack height is expanded to 6
such that even for instances with utilization rate 100% free tiers
are available for container re-arrangements.

Preliminary tests revealed that the pure DP approach was
not able to find solutions (in acceptable computation times)
for many instances given in the test set. Therefore, we limit
the further discussion to results obtained by an uninitialized
DP-based branch-and-bound method, an initialized DP-based
branch-and-bound approach, and the DP-based heuristic. We
refer to Table 1 for results obtained when applying these three
different methods. For each algorithm—the DP-based branch-
and-bound approach without (DPBnB) and with (iDPBnB) ini-
tialization as well as the DP-based heuristic (heur)—the num-
ber of instances for which the optimal solution (opt), the best
known solution (best) and no solution at all (none) could be
found is given. In addition, we report these values for apply-
ing the methods either with a time limit of 600 seconds or with
3600 seconds.

According to these numbers, it can be seen that with respect
to solution quality no considerable difference between those 6
algorithmic setups can be determined for instances with utiliza-
tion rates of 50% and 75%. For instances with an utilization rate
of 100% the runs with additional computation time reach supe-
rior solutions (or at least have a reduced number of instances
without any solution). It has to be highlighted that in fact the
heuristic DP state equivalence determination method as well as
the initialization phase of iDPBnB does not considerably con-
tribute to the solution quality.

In addition, we provide the average computation times for
each algorithmic setup (together with standard deviations) in
Table 2 for providing the optimal solution (opt) and reaching
a solution at all (tot), respectively. It can be concluded from
the numbers shown in Table 2, that the heuristic setting does
not even outperform the exact settings with respect to computa-

7

Table 2: Average computation times in seconds (standard deviations written with cursive numbers) for the results shown in Table 1.
The mean value for optimal solution found (opt) and solution found (tot) are reported.

di
m

s heur600 heur3600 iDPBnB600 iDPBnB3600 DPBnB600 DPBnB3600

util opt tot opt tot opt tot opt tot opt tot opt tot

4
×

4

050 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001
0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006 0.003 0.003 0.003 0.003

075 1.954 1.954 2.065 2.065 2.058 2.058 1.923 1.923 0.039 0.039 0.040 0.040
13.426 13.426 16.366 16.366 17.776 17.776 14.636 14.636 0.116 0.116 0.120 0.120

100 148.169 15.202 368.949 1121.629 13.411 15.238 375.753 1131.969 13.148 15.749 443.670 1339.405
214.653 273.924 677.269 1486.562 211.296 273.877 704.324 1500.218 204.847 276.062 798.077 1576.748

4
×

7

050 0.007 0.007 0.006 0.006 0.007 0.007 0.006 0.006 0.007 0.007 0.005 0.005
0.023 0.023 0.022 0.022 0.031 0.031 0.018 0.018 0.012 0.012 0.008 0.008

075 8.331 9.811 26.768 35.701 6.137 7.622 16.747 25.705 13.948 18.344 9.587 27.539
61.197 67.904 267.255 321.197 48.663 56.958 189.931 260.928 68.602 85.053 68.286 262.553

100 139.698 383.343 523.453 2184.784 130.131 388.809 526.388 2137.570 168.132 422.641 10.541 2154.114
198.355 267.257 881.709 1648.132 185.634 265.042 892.579 1655.450 220.417 255.303 876.368 1655.643

4
×

10

050 2.562 2.562 11.503 11.503 2.486 2.486 11.684 11.684 0.735 0.735 1.886 1.886
32.558 32.558 182.406 182.406 32.240 32.240 182.808 182.808 9.486 9.486 25.537 25.537

075 22.221 80.002 97.392 412.634 23.496 78.266 116.012 446.999 15.413 47.568 59.178 236.226
87.561 192.407 429.043 1083.885 87.399 188.572 464.061 1114.043 69.880 149.745 314.375 831.230

100 244.293 520.940 974.573 2997.914 248.662 523.426 1003.173 2976.320 246.201 522.892 976.486 2995.439
218.139 179.704 1064.459 1214.226 226.411 179.383 1107.856 1235.748 221.293 178.834 1010.507 1207.451

tion times. Even more, it can happen that the uninitialized pure
DP based branch-and-bound approach (DPBnB) performs bet-
ter than the other variants (e.g. instances of dimensions 4 × 4
and utilization rate 75%) since on the one hand there exists an
overhead for initializing the search via LPFH and on the other
hand the initialization can be misleading if an unpromising ini-
tial solution is provided.

With respect to the numbers shown in Table 2 it has to be
highlighted that standard deviations are relatively high com-
pared to the average runtimes. This can be explained by the
fact that for many instances the methods either find a solution in
very short time or very long runtimes are obtained. “Medium-
sized” runtimes are, however, almost not existing, cf. also Fig. 4
showing a histogram of runtimes for all tests performed on in-
stances with dimensions 4 × 10. Comparing the results for 600
second and 3600 seconds runtime limit, it can be observed that
the additional available computation time does not contribute
to the solution quality, cf. Tab. 1 leading to the conclusion that
even (much) longer runtimes would be necessary for achiev-
ing a considerable quality enhancement. Although this obser-
vation is not stunning with respect to the applicability of the
proposed methods to (very) large real-world instances, it gives
a promising outlook towards a hybridization of these methods
with (meta-)heuristic approaches since small and medium-sized
instances can be solved in very short computation times. There-
fore, these methods can be employed as subordinates for ex-
actly solving (small) subproblems identified by an enclosing
(metaheuristic) approach.

A further observation on numbers not shown in the tables can
be made with respect to the difficulty of the instances used for
testing: In addition to the classification into instances of dif-

ferent dimensions and utilization rates, for each of the 9 above
presented test sets four difficulty classes are defined. While for
the small instances, they do not have an impact on the solution
quality as well as the runtimes, it can be observed that with in-
creasing difficulty, the solution quality (i.e. the number of runs
reaching an (optimal) solution) decreases. However, since it is
at this time not possible to determine in advance whether or not
an instance is difficult, no algorithmic advantage can be taken.

9. Conclusions

Within this paper, we proposed a novel dynamic program-
ming (DP) approach for solving the container pre-marshalling
problem (PMP). Since preliminary tests revealed that the pure
DP method is not able to find solutions in acceptable computa-
tion times for instances comparable to real-world settings, we
extended the DP formulation by embedding it into a branch-
and-bound (B&B) framework. An appropriate initialization
procedure is adopted from [9] as well with the goal to speed
up the search. Finally, a heuristic DP state equivalence deter-
mination procedure is introduced sacrificing optimality in favor
of search speed.

Although extensive computation experiments showed that
for large (real-world) instances exact methods are still inap-
plicable, these experiments also revealed that all approaches
proposed for accelerating the originally introduced DP perform
equally good, such that it is possible to obtain optimal container
re-arrangement plans within short computation times for a large
set of realistic instances.

Although it could be shown that the proposed methods are
applicable to (small and medium-sized) real-world instances,

8

many container terminals are facing a more complex variant of
the PMP. While in the classical PMP, it is assumed that only one
bay has to be re-arrangement at the same time, it is often neces-
sary to do the same procedure for several bays simultaneously
while still only one gantry crane is available. Therefore, so-
called reach-stackers are employed. While they have the clear
advantage that inter-bay movements, i.e., movements from one
bay to another, can be performed much faster than with gantry
cranes, they have only limited access to the container—namely,
only the top-most container of stacks s1 and sw can be accessed
for each bay. It is therefore necessary, in future works to find
container re-arrangement plans which try to optimize all con-
tainer transports concurrently taking different container lifting
vehicles in consideration.

Acknowledgments

We want to thank our project partners Logistikum Steyr
(FH OÖ Forschungs & Entwicklungs GmbH), Ennshafen
OÖ GmbH and via donau – Österreichische Wasserstraßen-
Gesellschaft mbH for providing us valuable insights into con-
tainer transport and container terminal processes as well as
problems and challenges related to them.

[1] R. Stahlbock, S. Voß, Operations research at container terminals: a liter-
ature update, OR Spectrum 30 (2008) 1–52.

[2] D. Steenken, S. Voß, R. Stahlbock, Container terminal operation and op-
erations research - a classification and literature review, OR Spectrum 26
(2004) 3–49.

[3] I. F. Vis, R. de Koster, Transshipment of containers at a container ter-
minal: An overview, European Journal of Operational Research 147 (1)
(2003) 1–16.

[4] Y. Lee, S.-L. Chao, A neighborhood search heuristic for pre-marshalling
export containers, European Journal of Operational Research 196 (2)
(2009) 468–475.

[5] M. Caserta, S. Voß, M. Sniedovich, Applying the corridor method to a
blocks relocation problem, OR Spectrum 33 (2011) 915–929.

[6] F. Forster, A. Bortfeldt, A tree search procedure for the container reloca-
tion problem, Computers & Operations Research 39 (2) (2012) 299–309.

[7] Y. Lee, N.-Y. Hsu, An optimization model for the container pre-
marshalling problem, Computers & Operations Research 34 (11) (2007)
3295–3313.

[8] M. Caserta, S. Voß, A corridor method-based algorithm for the pre-
marshalling problem, in: M. Giacobini, A. Brabazon, S. Cagnoni,
G. Di Caro, A. Ekárt, A. Esparcia-Alcázar, M. Farooq, A. Fink,
P. Machado (Eds.), Applications of Evolutionary Computing, Vol. 5484
of Lecture Notes in Computer Science, Springer, 2009, pp. 788–797.

[9] C. Expósito-Izquierdo, B. Melián-Batista, M. Moreno-Vega, Pre-
marshalling problem: Heuristic solution method and instances generator,
Expert Systems with Applications 39 (9) (2012) 8337–8349.

[10] S.-H. Huang, T.-H. Lin, Heuristic algorithms for container pre-
marshalling problems, Computers & Industrial Engineering 62 (1) (2012)
13–20.

[11] A. Bortfeldt, F. Forster, A tree search procedure for the container pre-
marshalling problem, European Journal of Operational Research 217 (3)
(2012) 531–540.

[12] N. Gupta, D. S. Nau, On the complexity of blocks-world planning, Arti-
ficial Intelligence 56 (1992) 223–254.

[13] F. König, M. Lübbecke, Sorting with complete networks of stacks, in:
S.-H. Hong, H. Nagamochi, T. Fukunaga (Eds.), Algorithms and Compu-
tation, Vol. 5369 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2008, pp. 895–906.

[14] R. E. Bellman, Dynamic Programming, Dover Publications, 2003.
[15] J. Puchinger, P. J. Stuckey, Automating branch-and-bound for dynamic

programs, in: Proceedings of the 2008 ACM SIGPLAN symposium on

Partial evaluation and semantics-based program manipulation, PEPM ’08,
ACM, New York, NY, USA, 2008, pp. 81–89.

[16] http://sites.google.com/site/gciports (last visited Dec 2012).

9

