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1 Introduction
The home health care (HHC) problem deals with finding an optimal assignment of

nurses to nursing services (at patients’ homes) such that the overall working (and travel)

time is minimized while customer and nurse satisfactions are maximized. We consider a

real-world HHC problem setup from a Viennese health care company where we have the

following, partly soft side constraints:

• nurses are expected at the patients’ homes within certain time windows,

• for each job, we have a preferred start time,

• each job requires a minimum qualification that the nurse must hold (e.g. a nurse

for cleaning may not perform a medical service),

• the schedule should meet preferences of patients, nurses and employer,

• the nurses’ work time must follow legal regulations and their contract (concern-

ing e.g. resting periods, working hours per week),

• each nurse uses her/his preferred mode of transport (either motorized private

transport or public transport)

Hence, the HHC problem combines two hard-to-solve combinatorial problems—the vehicle

routing problem with time windows and the nurse rostering problem—which indicates that

the HHC problem is member of the class of NP-complete problems.

Within this work, we study the influence of appropriate travel times on solving the real-

world HHC problem as well as the quality of the obtained roster and tour plans. Therefore,

we estimate driving times for motorized private transport via a large set of historical data

while public transport travel times are provided by a local public transport data company.
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2 A Hybrid Solution Approach
We employ a hybrid approach for the HHC problem, consisting of two major parts: (1)

an initialization step, where we generate a (valid) initial schedule, and (2) an improvement

phase, where we systematically improve the initial solution without loosing validity. This

is achieved using a special evaluation function which guarantees that every invalid solution

is worse than the worst valid solution.

2.1 Initialization

We use a Constraint Programming (CP) approach to generate feasible initial solutions. In

CP, the problem is represented by discrete variables on which arbitrary (nonlinear) con-

straints are imposed. After filtering the variables’ domains wrt the constraints, the vari-

ables are systematically searched upon until a solution is found. We extend the standard

VRPTW-constraint-model [4] with additional constraints concerning the roster, aspects

and multi-modality, and apply a static search strategy, where we first fix half of the tours,

and then assign half of the tours to nurses before we fix the remaining tours and nurses.

Since the instances are particularly large (ca. 700 jobs, 500 nurses per day), we need

to decompose the problem into subinstances: first, we split the instance by qualification,

and iteratively solve each subinstance starting with the highest qualification. Second, we

cluster particularly large subinstance by area, where we choose k closely-located jobs and

nurses using a quadtree heuristic. If the k-clustered subinstance is not solved within a

given time limit τ , we simplify the instance by iteratively removing jobs and (in case of

further fails) by adding nurses and increasing the time-limit τ , until a solution is found.

As backup, as well as to evaluate the influence of the initial solution during the later

improvement phase, we also provide a random solution which only guarantees that a) all

jobs are executed and b) all pre-allocated jobs (e.g. appraisal interviews) remain assigned

to the corresponding nurses.

2.2 Variable Neighborhood Search/Descent Approach

For the improvement phase we followed two design criteria: First, we searched for a solu-

tion which is flexible enough to be easily adapted to other but yet related rostering/tour

planning problems (e.g. rostering for other home health care companies). Second, we

needed to find an approach which is powerful enough to tackle real-world instances, i.e.

instances of huge size. Therefore, we decided to implement a general variable neighbor-

hood search (VNS) scheme [1] incorporating a variable neighborhood descent (VND) as

local search procedure. On one hand, this metaheuristic turned out to be efficient for

many related problems (e.g. [2]). On the other hand, it is very easy to keep that approach

as general as possible since problem specific knowledge is only necessary within the objec-

tive function (which has to be adapted anyway when applying our approach to problem

instances stated by other home health care companies) as well as for the definition of



the neighborhoods to be used during the local search procedure: The latter is based on

rather general moves: The first move type defined are the so-called swap nurses moves,

which simply swaps the tours of two nurses with each other. The second move type (shift

mission) moves one mission from one tour to another tour. For the new tour, the best

fitting slot along the tour is chosen. The third utilized move type (reposition mission)

tries to find a new slot for a selected mission within its current tour.

The initial neighborhood order applied in the VND is set to (1) swap nurses, (2) shift

mission, and (3) reposition mission. During the execution of the VND, the neighborhood

order is adapted using the same way as presented in [3]. For the shaking phase of VNS

we apply i random shift moves in the i-th neighborhood, with 1 ≤ i ≤ 5.

3 Preliminary Results and Discussion
We apply our methods on ten real-world one-day-instances (approx. 700 jobs and 500

nurses), as summarized in Table 1. For each instance, we list the objective values after

initialization (either using the CP approach or the random solution), after applying only

VND (without enclosing VNS) and after a fully executed VNS. Additionally, we present

the number of VND iterations after the first full application of VND and the number of to-

tal VND iterations after VNS finally ended its search. We consider 4 travel time scenarios:

motorized private transport (CAR), public transport (PUBLIC), both transport modes

depending on the nurses’ preferences (INTERMODAL), and a fixed travel time scenario

where the travel time between all jobs is estimated to be 15 minutes (FIFTEEN)1. Final

results were always obtained within at most two hours runtime2.

First, we see that the application of VND and VNS/VND significantly reduces the

initial objective value, where using the VNS further improves the solutions. Second, the

CP approach for initialization has a positive effect on the (total) number of VND itera-

tions. Third, we compare results from using fixed travel times with results using estimated,

varying travel times based on realistic data and see that the solution quality is improved

with estimated travel times and furthermore—when having a closer look at the generated

tours—more suitable round trips are computed. On average, values for car are better than

intermodal transport values, since the objective value includes a term for travel times and

the car scenario does not consider times for searching parking slots and walking to/from

the destination due to missing data. Finally, we also observe an impact of fixed/varying

travel times on our methods: the CP approach finds initial solutions far quicker with vary-

ing travel times, since the search procedure is driven by selecting the closest jobs (if all

jobs have the same distance this cannot guide search). On the other hand, the VND/VNS

approach converges faster with fixed travel times, which probably results from the smaller

scope for improvement compared to the varying case.

1the procedure currently applied at the home health care company due to missing data
2except for those instances using CP+FIFTEEN for which no meaningful solutions were found



In summary, we observe a notable impact of travel times on the HHC solving process

and see that for all travel time scenarios, the CP—VND/VNS approach shows to be the

most effective technique and provides the best results.

Table 1: Values given are means over ten runs each with standard deviations given in

parentheses below. Due to a data error instance 03 is unsolvable. The CP approach

struggled to find valid initial solutions within reasonable time for the FIFTEEN setup.
INTERMODAL CAR PUBLIC FIFTEEN

init. VND final init. VND final init. VND final init. VND final

value value iter. value iter. value value iter. value iter. value value iter. value iter. value value iter. value iter.

0.0885 2011.6 0.0306 3028.2 0.0292 0.0843 1941.0 0.0277 2737.0 0.0270 0.0894 1968.5 0.0330 2924.3 0.0320 — — — — —

C
P

— (28.9) (0.0007) (459.1) (0.0004) — (58.9) (0.0006) (370.9) (0.0004) — (46.3) (0.0005) (411.9) (0.0007) — (—) (—) (—) (—)

159.7521 2820.5 0.5316 4035.6 0.0300 159.9421 2659.1 0.0289 3618.6 0.0274 162.1559 2835.4 0.4337 4027.5 0.2320 161.1468 1662.2 1.4460 2174.9 1.1443in
st

0
1

ra
n
d
.

— (85.1) (0.5271) (679.3) (0.0012) — (96.6) (0.0006) (360.2) (0.0007) — (75.4) (0.6989) (539.1) (0.4220) — (41.7) (0.5163) (258.4) (0.5676)

0.0893 1987.4 0.0310 2720.6 0.0302 0.0841 1838.4 0.0284 2569.0 0.0276 0.0901 1894.0 0.0332 2622.4 0.0323 — — — — —

C
P

— (53.9) (0.0006) (280.7) (0.0004) — (72.9) (0.0005) (325.6) (0.0006) — (57.1) (0.0004) (292.2) (0.0006) — (—) (—) (—) (—)

149.9526 2724.5 0.5318 3606.8 0.3306 152.1429 2591.4 0.1286 3289.9 0.0278 151.4570 2727.3 0.3334 3556.6 0.2324 151.1473 1608.0 0.5442 1980.6 0.5433in
st

0
2

ra
n
d
.

— (76.9) (0.5274) (317.9) (0.4831) — (43.8) (0.3165) (380.6) (0.0003) — (79.4) (0.4832) (421.7) (0.4220) — (42.6) (0.5278) (189.5) (0.5276)

1.0860 1909.2 1.0293 2776.6 1.0281 1.0812 1832.2 1.0264 2609.0 1.0255 1.0873 1892.0 1.0310 2551.1 1.0303 — — — — —

C
P

— (46.4) (0.0005) (368.6) (0.0005) — (77.7) (0.0008) (432.2) (0.0006) — (34.3) (0.0007) (416.4) (0.0006) — (—) (—) (—) (—)

144.4498 2661.0 1.0292 3710.3 1.0280 147.8399 2528.0 1.0266 3201.3 1.0259 146.9539 2708.4 1.0310 3426.8 1.0301 148.1446 1567.8 1.0416 2066.3 1.0402in
st

0
3

ra
n
d
.

— (95.3) (0.0008) (525.2) (0.0008) — (72.7) (0.0006) (197.1) (0.0004) — (65.4) (0.0002) (394.8) (0.0006) — (46.7) (0.0006) (238.7) (0.0007)

0.0896 1949.8 0.0310 2877.1 0.0299 0.0842 1784.2 0.0290 2570.2 0.0281 0.0907 1863.6 0.0335 2811.4 0.0325 — — — — —

C
P

— (36.2) (0.0005) (422.1) (0.0006) — (63.5) (0.0005) (374.3) (0.0006) — (53.1) (0.0005) (550.3) (0.0004) — (—) (—) (—) (—)

156.5531 2598.5 0.0325 3361.6 0.0312 156.0438 2543.5 0.0299 3458.7 0.0285 157.1577 2666.0 0.0343 3629.7 0.0329 155.1489 1583.6 0.0449 2033.4 0.0437in
st

0
4

ra
n
d
.

— (73.9) (0.0011) (413.1) (0.0012) — (68.2) (0.0010) (442.8) (0.0008) — (77.2) (0.0007) (387.9) (0.0010) — (40.2) (0.0009) (299.0) (0.0010)

0.0885 2038.5 0.0314 2889.6 0.0303 0.0847 1932.6 0.0288 2562.8 0.0280 0.0895 1962.6 0.0336 2713.3 0.0325 — — — — —

C
P

— (39.3) (0.0005) (373.0) (0.0008) — (65.6) (0.0006) (373.2) (0.0007) — (39.3) (0.0005) (261.9) (0.0006) — (—) (—) (—) (—)

164.8494 2925.7 0.0314 3841.7 0.0303 167.8405 2708.7 0.0291 3697.1 0.0281 166.5543 2877.4 0.0332 3908.3 0.0320 168.1462 1722.7 0.0455 2143.5 0.0446in
st

0
5

ra
n
d
.

— (68.4) (0.0006) (300.4) (0.0006) — (67.4) (0.0006) (412.0) (0.0006) — (95.5) (0.0005) (563.9) (0.0007) — (39.5) (0.0009) (233.4) (0.0010)

0.0867 1965.4 0.0301 2865.3 0.0290 0.0825 1851.4 0.0278 2755.0 0.0266 0.0876 1922.3 0.0323 2675.2 0.0314 — — — — —

C
P

— (62.9) (0.0007) (371.3) (0.0009) — (83.6) (0.0009) (365.8) (0.0008) — (53.7) (0.0006) (290.6) (0.0007) — (—) (—) (—) (—)

147.3521 2740.1 0.0308 3942.7 0.0295 145.6432 2600.0 0.0282 3411.4 0.0272 143.7569 2730.3 0.0325 3346.3 0.0319 145.1481 1619.2 0.0433 2086.0 0.0420in
st

0
6

ra
n
d
.

— (32.3) (0.0007) (621.6) (0.0010) — (67.1) (0.0007) (409.1) (0.0005) — (33.5) (0.0003) (319.9) (0.0005) — (42.6) (0.0010) (217.3) (0.0011)

0.0904 1992.7 0.0323 2963.0 0.0310 0.0838 1832.4 0.0292 2381.1 0.0286 0.0914 1949.5 0.0344 2897.4 0.0332 — — — — —

C
P

— (52.9) (0.0007) (383.6) (0.0008) — (52.6) (0.0005) (453.3) (0.0009) — (37.8) (0.0006) (404.2) (0.0004) — (—) (—) (—) (—)

149.2530 2778.5 0.0322 3504.3 0.0315 149.4421 2592.6 0.0298 3663.5 0.0287 148.4568 2709.3 0.0345 3892.6 0.0332 148.1466 1661.7 0.0448 1971.1 0.0442in
st

0
7

ra
n
d
.

— (75.3) (0.0007) (492.9) (0.0007) — (41.4) (0.0005) (596.5) (0.0009) — (86.8) (0.0009) (377.0) (0.0009) — (51.4) (0.0014) (198.5) (0.0015)

0.0872 1977.0 0.0291 2931.9 0.0277 0.0827 1841.3 0.0265 2563.1 0.0254 0.0882 1922.4 0.0312 2695.9 0.0304 — — — — —

C
P

— (50.6) (0.0005) (445.1) (0.0010) — (53.9) (0.0007) (537.9) (0.0009) — (49.5) (0.0006) (387.2) (0.0005) — (—) (—) (—) (—)

155.9448 2763.2 0.4295 3646.0 0.4284 157.2355 2585.8 0.6274 3296.1 0.6263 157.7491 2710.5 0.0320 3605.2 0.0308 157.1407 1572.2 0.2438 1950.3 0.0426in
st

0
8

ra
n
d
.

— (77.5) (0.8433) (482.2) (0.8437) — (79.6) (0.9665) (282.4) (0.9662) — (80.1) (0.0008) (448.6) (0.0007) — (35.5) (0.6327) (223.7) (0.0013)

0.0886 1865.4 0.0304 2732.8 0.0294 0.0816 1764.2 0.0275 2719.6 0.0263 0.0869 1834.9 0.0326 2778.1 0.0314 — — — — —

C
P

— (57.9) (0.0006) (413.8) (0.0008) — (46.9) (0.0007) (429.3) (0.0007) — (69.5) (0.0004) (413.1) (0.0007) — (—) (—) (—) (—)

165.3541 2655.0 0.0309 3482.7 0.0298 164.8446 2548.8 0.0278 3221.0 0.0271 165.8581 2678.1 0.0327 3690.6 0.0315 165.1496 1645.7 0.0435 2126.8 0.0422in
st

0
9

ra
n
d
.

— (70.9) (0.0005) (422.7) (0.0010) — (84.1) (0.0003) (350.3) (0.0008) — (71.7) (0.0010) (339.6) (0.0005) — (55.0) (0.0014) (286.5) (0.0009)

0.0906 2106.5 0.0300 2936.1 0.0288 0.0851 2017.0 0.0270 2694.0 0.0262 0.0914 2088.9 0.0313 2807.5 0.0305 — — — — —

C
P

— (61.9) (0.0006) (310.2) (0.0007) — (77.4) (0.0008) (365.5) (0.0007) — (65.9) (0.0006) (373.6) (0.0008) — (—) (—) (—) (—)

166.5479 2942.9 0.0299 3912.7 0.0288 167.1392 2751.1 0.0272 3687.1 0.0262 166.0529 2945.1 0.0321 3967.4 0.0307 167.1440 1712.1 0.0449 2269.1 0.0434in
st

1
0

ra
n
d
.

— (105.5) (0.0006) (393.7) (0.0006) — (36.1) (0.0004) (407.2) (0.0006) — (62.4) (0.0004) (433.7) (0.0008) — (63.7) (0.0016) (296.6) (0.0012)
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