The Influence of Accurate Travel Times on a Home Health Care Scheduling Problem^{*}

Matthias Prandtstetter Andrea Rendl Jakob Puchinger

AIT Austrian Institute of Technology Mobility Department, Dynamic Transportation Systems Giefinggasse 2, 1210 Vienna, Austria Email: {matthias.prandtstetter|andrea.rendl|jakob.puchinger}@ait.ac.at

1 Introduction

The home health care (HHC) problem deals with finding an optimal assignment of nurses to nursing services (at patients' homes) such that the overall working (and travel) time is minimized while customer and nurse satisfactions are maximized. We consider a real-world HHC problem setup from a Viennese health care company where we have the following, partly soft side constraints:

- nurses are expected at the patients' homes within certain time windows,
- for each job, we have a **preferred start time**,
- each job requires a minimum **qualification** that the nurse must hold (e.g. a nurse for cleaning may not perform a medical service),
- the schedule should meet **preferences** of patients, nurses and employer,
- the nurses' work time must follow **legal regulations** and **their contract** (concerning e.g. resting periods, working hours per week),
- each nurse uses her/his **preferred mode of transport** (either motorized private transport or public transport)

Hence, the HHC problem combines two hard-to-solve combinatorial problems—the vehicle routing problem with time windows and the nurse rostering problem—which indicates that the HHC problem is member of the class of NP-complete problems.

Within this work, we study the influence of appropriate travel times on solving the realworld HHC problem as well as the quality of the obtained roster and tour plans. Therefore, we estimate driving times for motorized private transport via a large set of historical data while public transport travel times are provided by a local public transport data company.

^{*}This work is supported by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) within the strategic programme I2VSplus under grant 826153 as well as our project partners Verkehrsverbund Ost-Region GmbH (ITS Vienna Region), Sozial Global AG and ilogs mobile software GmbH by providing appropriate data.

2 A Hybrid Solution Approach

We employ a hybrid approach for the HHC problem, consisting of two major parts: (1) an *initialization step*, where we generate a (valid) initial schedule, and (2) an *improvement phase*, where we systematically improve the initial solution without loosing validity. This is achieved using a special evaluation function which guarantees that every invalid solution is worse than the worst valid solution.

2.1 Initialization

We use a Constraint Programming (CP) approach to generate feasible initial solutions. In CP, the problem is represented by discrete variables on which arbitrary (nonlinear) constraints are imposed. After filtering the variables' domains wrt the constraints, the variables are systematically searched upon until a solution is found. We extend the standard VRPTW-constraint-model [4] with additional constraints concerning the roster, aspects and multi-modality, and apply a static search strategy, where we first fix half of the tours, and then assign half of the tours to nurses before we fix the remaining tours and nurses.

Since the instances are particularly large (ca. 700 jobs, 500 nurses per day), we need to decompose the problem into subinstances: first, we split the instance by qualification, and iteratively solve each subinstance starting with the highest qualification. Second, we cluster particularly large subinstance by area, where we choose k closely-located jobs and nurses using a quadtree heuristic. If the k-clustered subinstance is not solved within a given time limit τ , we simplify the instance by iteratively removing jobs and (in case of further fails) by adding nurses and increasing the time-limit τ , until a solution is found.

As backup, as well as to evaluate the influence of the initial solution during the later improvement phase, we also provide a random solution which only guarantees that a) all jobs are executed and b) all pre-allocated jobs (e.g. appraisal interviews) remain assigned to the corresponding nurses.

2.2 Variable Neighborhood Search/Descent Approach

For the improvement phase we followed two design criteria: First, we searched for a solution which is flexible enough to be easily adapted to other but yet related rostering/tour planning problems (e.g. rostering for other home health care companies). Second, we needed to find an approach which is powerful enough to tackle real-world instances, i.e. instances of huge size. Therefore, we decided to implement a general *variable neighborhood search* (VNS) scheme [1] incorporating a *variable neighborhood descent* (VND) as local search procedure. On one hand, this metaheuristic turned out to be efficient for many related problems (e.g. [2]). On the other hand, it is very easy to keep that approach as general as possible since problem specific knowledge is only necessary within the objective function (which has to be adapted anyway when applying our approach to problem instances stated by other home health care companies) as well as for the definition of the neighborhoods to be used during the local search procedure: The latter is based on rather general moves: The first move type defined are the so-called *swap nurses* moves, which simply swaps the tours of two nurses with each other. The second move type (*shift mission*) moves one mission from one tour to another tour. For the new tour, the best fitting slot along the tour is chosen. The third utilized move type (*reposition mission*) tries to find a new slot for a selected mission within its current tour.

The initial neighborhood order applied in the VND is set to (1) swap nurses, (2) shift mission, and (3) reposition mission. During the execution of the VND, the neighborhood order is adapted using the same way as presented in [3]. For the shaking phase of VNS we apply i random shift moves in the *i*-th neighborhood, with $1 \le i \le 5$.

3 Preliminary Results and Discussion

We apply our methods on ten real-world one-day-instances (approx. 700 jobs and 500 nurses), as summarized in Table 1. For each instance, we list the objective values after initialization (either using the CP approach or the random solution), after applying only VND (without enclosing VNS) and after a fully executed VNS. Additionally, we present the number of VND iterations after the first full application of VND and the number of to-tal VND iterations after VNS finally ended its search. We consider 4 travel time scenarios: motorized private transport (CAR), public transport (PUBLIC), both transport modes depending on the nurses' preferences (INTERMODAL), and a fixed travel time scenario where the travel time between all jobs is estimated to be 15 minutes (FIFTEEN)¹. Final results were always obtained within at most two hours runtime².

First, we see that the application of VND and VNS/VND significantly reduces the initial objective value, where using the VNS further improves the solutions. Second, the CP approach for initialization has a positive effect on the (total) number of VND iterations. Third, we compare results from using fixed travel times with results using estimated, varying travel times based on realistic data and see that the solution quality is improved with estimated travel times and furthermore—when having a closer look at the generated tours—more suitable round trips are computed. On average, values for car are better than intermodal transport values, since the objective value includes a term for travel times and the car scenario does not consider times for searching parking slots and walking to/from the destination due to missing data. Finally, we also observe an impact of fixed/varying travel times, since the search procedure is driven by selecting the closest jobs (if all jobs have the same distance this cannot guide search). On the other hand, the VND/VNS approach converges faster with fixed travel times, which probably results from the smaller scope for improvement compared to the varying case.

¹the procedure currently applied at the home health care company due to missing data

²except for those instances using CP+FIFTEEN for which no meaningful solutions were found

In summary, we observe a notable impact of travel times on the HHC solving process and see that for all travel time scenarios, the CP—VND/VNS approach shows to be the most effective technique and provides the best results.

Table 1: Values given are means over ten runs each with standard deviations given in parentheses below. Due to a data error instance 03 is unsolvable. The CP approach struggled to find valid initial solutions within reasonable time for the FIFTEEN setup.

	INTERMODAL			CAR			PUBLIC			FIFTEEN		
	init.	VND	final	init.	VND	final	init.	VND	final	init.	VND	final
	value	value iter.	value iter.	value	value iter.	value iter.	value	value iter.	value iter.	value	value iter.	value iter.
inst_01 rand. CP	0.0885	$\begin{array}{ccc} 2011.6 & 0.0306 \\ (28.9) & (0.0007) \end{array}$	$\begin{array}{ccc} 3028.2 & 0.0292 \\ (459.1) & (0.0004) \end{array}$	0.0843	$\begin{array}{ccc} 1941.0 & 0.0277 \\ (58.9) & (0.0006) \end{array}$	$\begin{array}{ccc} 2737.0 & 0.0270 \\ (370.9) & (0.0004) \end{array}$	0.0894	$\begin{array}{ccc} 1968.5 & 0.0330 \\ (46.3) & (0.0005) \end{array}$	$\begin{array}{ccc} 2924.3 & 0.0320 \\ (411.9) & (0.0007) \end{array}$	_	() ()	(_) (_)
	159.7521	$\begin{array}{ccc} 2820.5 & 0.5316 \\ (85.1) & (0.5271) \end{array}$	$\begin{array}{ccc} 4035.6 & 0.0300 \\ (679.3) & (0.0012) \end{array}$	159.9421	$\begin{array}{ccc} 2659.1 & 0.0289 \\ (96.6) & (0.0006) \end{array}$	$\substack{3618.6 & 0.0274 \\ (360.2) & (0.0007) \\ \end{array}$	162.1559 —	$\begin{array}{ccc} 2835.4 & 0.4337 \\ (75.4) & (0.6989) \end{array}$	$\substack{4027.5 & 0.2320 \\ (539.1) & (0.4220) }$	161.1468	$\begin{array}{cccc} 1662.2 & 1.4460 \\ (41.7) & (0.5163) \end{array}$	$\begin{array}{ccc} 2174.9 & 1.1443 \\ (258.4) & (0.5676) \end{array}$
inst_02 rand. CP	0.0893	$\begin{array}{ccc} 1987.4 & 0.0310 \\ (53.9) & (0.0006) \end{array}$	$\begin{array}{ccc} 2720.6 & 0.0302 \\ (280.7) & (0.0004) \end{array}$	0.0841	$\begin{array}{ccc} 1838.4 & 0.0284 \\ (72.9) & (0.0005) \end{array}$	$\begin{array}{ccc} 2569.0 & 0.0276 \\ (325.6) & (0.0006) \end{array}$	0.0901	$\begin{array}{ccc} 1894.0 & 0.0332 \\ (57.1) & (0.0004) \end{array}$	$\begin{array}{cccc} 2622.4 & 0.0323 \\ (292.2) & (0.0006) \end{array}$	_	() ()	() ()
	149.9526 —	$\begin{array}{ccc} 2724.5 & 0.5318 \\ (76.9) & (0.5274) \end{array}$	$\begin{array}{ccc} 3606.8 & 0.3306 \\ (317.9) & (0.4831) \end{array}$	152.1429	$\begin{array}{ccc} 2591.4 & 0.1286 \\ (43.8) & (0.3165) \end{array}$	$\substack{3289.9 \\ (380.6)} 0.0278 \\ (0.0003)$	151.4570 —	$\begin{array}{ccc} 2727.3 & 0.3334 \\ (79.4) & (0.4832) \end{array}$	$\substack{3556.6 \\ (421.7) \\ (0.4220)}$	151.1473	$\substack{1608.0 & 0.5442 \\ (42.6) & (0.5278) \end{array}$	$\begin{array}{ccc} 1980.6 & 0.5433 \\ (189.5) & (0.5276) \end{array}$
inst_03 rand. CP	1.0860	$\begin{array}{ccc} 1909.2 & 1.0293 \\ (46.4) & (0.0005) \end{array}$	$\begin{array}{ccc} 2776.6 & 1.0281 \\ (368.6) & (0.0005) \end{array}$	1.0812	$\begin{array}{ccc} 1832.2 & 1.0264 \\ (77.7) & (0.0008) \end{array}$	$\substack{2609.0 & 1.0255 \\ (432.2) & (0.0006) }$	1.0873	$\begin{array}{ccc} 1892.0 & 1.0310 \\ (34.3) & (0.0007) \end{array}$	$\substack{2551.1 & 1.0303 \\ (416.4) & (0.0006) }$	_	(_) (_)	() ()
	144.4498	$\begin{array}{ccc} 2661.0 & 1.0292 \\ (95.3) & (0.0008) \end{array}$	$\begin{array}{ccc} 3710.3 & 1.0280 \\ (525.2) & (0.0008) \end{array}$	147.8399 —	$\begin{array}{ccc} 2528.0 & 1.0266 \\ (72.7) & (0.0006) \end{array}$	$\substack{3201.3 & 1.0259 \\ (197.1) & (0.0004) }$	146.9539	$\begin{array}{ccc} 2708.4 & 1.0310 \\ (65.4) & (0.0002) \end{array}$	$\begin{array}{ccc} 3426.8 & 1.0301 \\ (394.8) & (0.0006) \end{array}$	148.1446	$\begin{array}{rrr} 1567.8 & 1.0416 \\ (46.7) & (0.0006) \end{array}$	2066.3 1.0402 (238.7) (0.0007)
inst_04 rand. CP	0.0896	$\substack{1949.8 & 0.0310 \\ (36.2) & (0.0005) \end{array}$	$\substack{2877.1 & 0.0299 \\ (422.1) & (0.0006) }$	0.0842	$\substack{1784.2 & 0.0290 \\ (63.5) & (0.0005) \end{array}$	$\substack{2570.2 \\ (374.3)} \begin{array}{c} 0.0281 \\ (0.0006) \end{array}$	0.0907	$\substack{1863.6 & 0.0335 \\ (53.1) & (0.0005) }$	$\substack{2811.4 & 0.0325 \\ (550.3) & (0.0004) }$	_	() ()	() ()
	156.5531	$\begin{array}{ccc} 2598.5 & 0.0325 \\ (73.9) & (0.0011) \end{array}$	$\begin{array}{ccc} 3361.6 & 0.0312 \\ (413.1) & (0.0012) \end{array}$	156.0438	$\begin{array}{ccc} 2543.5 & 0.0299 \\ (68.2) & (0.0010) \end{array}$	$\begin{array}{ccc} 3458.7 & 0.0285 \\ (442.8) & (0.0008) \end{array}$	157.1577	$\begin{array}{ccc} 2666.0 & 0.0343 \\ (77.2) & (0.0007) \end{array}$	$\begin{array}{ccc} 3629.7 & 0.0329 \\ (387.9) & (0.0010) \end{array}$	155.1489	$\begin{array}{ccc} 1583.6 & 0.0449 \\ (40.2) & (0.0009) \end{array}$	$\begin{array}{ccc} 2033.4 & 0.0437 \\ (299.0) & (0.0010) \end{array}$
inst_05 rand. CP	0.0885	$\begin{array}{ccc} 2038.5 & 0.0314 \\ (39.3) & (0.0005) \end{array}$	2889.6 0.0303 (373.0) (0.0008)	0.0847	$\substack{1932.6 \\ (65.6) } 0.0288 \\ (0.0006)$	$\substack{2562.8 \\ (373.2)} 0.0280 \\ (0.0007)$	0.0895	$\begin{array}{ccc} 1962.6 & 0.0336 \\ (39.3) & (0.0005) \end{array}$	$\begin{array}{ccc} 2713.3 & 0.0325 \\ (261.9) & (0.0006) \end{array}$	_	() ()	() ()
	164.8494 —	$\begin{array}{ccc} 2925.7 & 0.0314 \\ (68.4) & (0.0006) \end{array}$	$\begin{array}{ccc} 3841.7 & 0.0303 \\ (300.4) & (0.0006) \end{array}$	167.8405	$\begin{array}{ccc} 2708.7 & 0.0291 \\ (67.4) & (0.0006) \end{array}$	$\substack{3697.1 & 0.0281 \\ (412.0) & (0.0006) }$	166.5543 —	$\begin{array}{ccc} 2877.4 & 0.0332 \\ (95.5) & (0.0005) \end{array}$	$\substack{3908.3 \\ (563.9) } 0.0320 \\ (0.0007)$	168.1462 —	1722.7 0.0455 (39.5) (0.0009)	$\begin{array}{ccc} 2143.5 & 0.0446 \\ (233.4) & (0.0010) \end{array}$
inst_06 rand. CP	0.0867	$\begin{array}{ccc} 1965.4 & 0.0301 \\ (62.9) & (0.0007) \end{array}$	$\begin{array}{ccc} 2865.3 & 0.0290 \\ (371.3) & (0.0009) \end{array}$	0.0825	$\begin{array}{ccc} 1851.4 & 0.0278 \\ (83.6) & (0.0009) \end{array}$	$\begin{array}{ccc} 2755.0 & 0.0266 \\ (365.8) & (0.0008) \end{array}$	0.0876	$\begin{array}{ccc} 1922.3 & 0.0323 \\ (53.7) & (0.0006) \end{array}$	$\begin{array}{ccc} 2675.2 & 0.0314 \\ (290.6) & (0.0007) \end{array}$	_	() ()	() ()
	147.3521 —	$\begin{array}{ccc} 2740.1 & 0.0308 \\ (32.3) & (0.0007) \end{array}$	$\substack{3942.7 \\ (621.6)} 0.0295 \\ (0.0010)$	145.6432	$\substack{2600.0 & 0.0282 \\ (67.1) & (0.0007) }$	$\substack{3411.4 & 0.0272 \\ (409.1) & (0.0005) }$	143.7569 —	$\begin{array}{ccc} 2730.3 & 0.0325 \\ (33.5) & (0.0003) \end{array}$	$\substack{3346.3 & 0.0319 \\ (319.9) & (0.0005) \end{array}$	145.1481	$\begin{array}{ccc} 1619.2 & 0.0433 \\ (42.6) & (0.0010) \end{array}$	$\begin{array}{ccc} 2086.0 & 0.0420 \\ (217.3) & (0.0011) \end{array}$
inst_07 rand. CP	0.0904	$\begin{array}{ccc} 1992.7 & 0.0323 \\ (52.9) & (0.0007) \end{array}$	2963.0 0.0310 (383.6) (0.0008)	0.0838	$\begin{array}{ccc} 1832.4 & 0.0292 \\ (52.6) & (0.0005) \end{array}$	$\begin{array}{ccc} 2381.1 & 0.0286 \\ (453.3) & (0.0009) \end{array}$	0.0914	$\begin{array}{ccc} 1949.5 & 0.0344 \\ (37.8) & (0.0006) \end{array}$	$\begin{array}{ccc} 2897.4 & 0.0332 \\ (404.2) & (0.0004) \end{array}$	_	() ()	() ()
	149.2530 —	$\begin{array}{ccc} 2778.5 & 0.0322 \\ (75.3) & (0.0007) \end{array}$	$\begin{array}{ccc} 3504.3 & 0.0315 \\ (492.9) & (0.0007) \end{array}$	149.4421	$\begin{array}{ccc} 2592.6 & 0.0298 \\ (41.4) & (0.0005) \end{array}$	$\substack{3663.5 & 0.0287 \\ (596.5) & (0.0009) \end{array}$	148.4568	$\begin{array}{ccc} 2709.3 & 0.0345 \\ (86.8) & (0.0009) \end{array}$	$\substack{3892.6 \\ (377.0)} 0.0332 \\ (0.0009)$	148.1466	$\begin{array}{ccc} 1661.7 & 0.0448 \\ (51.4) & (0.0014) \end{array}$	$\begin{array}{ccc} 1971.1 & 0.0442 \\ (198.5) & (0.0015) \end{array}$
inst_08 rand. CP	0.0872	$\begin{array}{ccc} 1977.0 & 0.0291 \\ (50.6) & (0.0005) \end{array}$	$\begin{array}{ccc} 2931.9 & 0.0277 \\ (445.1) & (0.0010) \end{array}$	0.0827	$\substack{1841.3 & 0.0265 \\ (53.9) & (0.0007) \end{array}$	$\substack{2563.1 \\ (537.9) } 0.0254 \\ (0.0009) }$	0.0882	$\substack{1922.4 & 0.0312 \\ (49.5) & (0.0006) }$	$\substack{2695.9 & 0.0304 \\ (387.2) & (0.0005) }$	_	() ()	() ()
	155.9448	$\begin{array}{ccc} 2763.2 & 0.4295 \\ (77.5) & (0.8433) \end{array}$	$\begin{array}{ccc} 3646.0 & 0.4284 \\ (482.2) & (0.8437) \end{array}$	157.2355	$\begin{array}{ccc} 2585.8 & 0.6274 \\ (79.6) & (0.9665) \end{array}$	$\substack{3296.1 & 0.6263 \\ (282.4) & (0.9662) }$	157.7491 —	$\begin{array}{ccc} 2710.5 & 0.0320 \\ (80.1) & (0.0008) \end{array}$	$\substack{3605.2 \\ (448.6) \\ (0.0007)}$	157.1407	1572.2 0.2438 (35.5) (0.6327)	$\begin{array}{ccc} 1950.3 & 0.0426 \\ (223.7) & (0.0013) \end{array}$
inst_09 rand. CP	0.0886	$\substack{1865.4 & 0.0304 \\ (57.9) & (0.0006) \end{array}$	$\begin{array}{ccc} 2732.8 & 0.0294 \\ (413.8) & (0.0008) \end{array}$	0.0816	$\substack{1764.2 & 0.0275 \\ (46.9) & (0.0007) \end{array}$	$\substack{2719.6 \\ (429.3)} \begin{array}{c} 0.0263 \\ (0.0007) \end{array}$	0.0869	$\substack{1834.9 & 0.0326 \\ (69.5) & (0.0004) }$	$\substack{2778.1 & 0.0314 \\ (413.1) & (0.0007) }$	_	(_) (_)	(_) (_)
	165.3541	2655.0 0.0309 (70.9) (0.0005)	$\begin{array}{ccc} 3482.7 & 0.0298 \\ (422.7) & (0.0010) \end{array}$	164.8446	$\begin{array}{ccc} 2548.8 & 0.0278 \\ (84.1) & (0.0003) \end{array}$	$\substack{3221.0 & 0.0271 \\ (350.3) & (0.0008) }$	165.8581	$\begin{array}{ccc} 2678.1 & 0.0327 \\ (71.7) & (0.0010) \end{array}$	$\begin{array}{ccc} 3690.6 & 0.0315 \\ (339.6) & (0.0005) \end{array}$	165.1496 —	1645.7 0.0435 (55.0) (0.0014)	$\begin{array}{ccc} 2126.8 & 0.0422 \\ (286.5) & (0.0009) \end{array}$
CP CP	0.0906	$\begin{array}{ccc} 2106.5 & 0.0300 \\ (61.9) & (0.0006) \end{array}$	$\begin{array}{ccc} 2936.1 & 0.0288 \\ (310.2) & (0.0007) \end{array}$	0.0851	$\begin{array}{ccc} 2017.0 & 0.0270 \\ (77.4) & (0.0008) \end{array}$	$\begin{array}{ccc} 2694.0 & 0.0262 \\ (365.5) & (0.0007) \end{array}$	0.0914	$\begin{array}{ccc} 2088.9 & 0.0313 \\ (65.9) & (0.0006) \end{array}$	$\begin{array}{ccc} 2807.5 & 0.0305 \\ (373.6) & (0.0008) \end{array}$	_	() ()	 () ()
ins rand.	166.5479	$2942.9 0.0299 \\ (105.5) (0.0006)$	3912.7 0.0288 (393.7) (0.0006)	167.1392	$\begin{array}{ccc} 2751.1 & 0.0272 \\ (36.1) & (0.0004) \end{array}$	$\begin{array}{ccc} 3687.1 & 0.0262 \\ (407.2) & (0.0006) \end{array}$	166.0529	$2945.1 0.0321 \\ (62.4) (0.0004)$	$\begin{array}{rrr} 3967.4 & 0.0307 \\ (433.7) & (0.0008) \end{array}$	167.1440	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2269.1 0.0434 (296.6) (0.0012)

References

- P. Hansen and N. Mladenović. Variable neighborhood search. In F. W. Glover and G. A. Kochenberger, editors, *Handbook of Metaheuristics*, pages 145–184. Kluwer Academic Publisher, New York, 2003.
- [2] S. Pirkwieser and G. R. Raidl. A variable neighborhood search for the periodic vehicle routing problem with time windows. In C. Prodhon et al., editors, *Proceedings of the 9th EU/MEeting on Metaheuristics* for Logistics and Vehicle Routing, Troyes, France, 23–24 Oct. 2008.
- [3] M. Prandtstetter, G. R. Raidl, and T. Misar. A hybrid algorithm for computing tours in a spare parts warehouse. In C. Cotta and P. Cowling, editors, *Evolutionary Computation in Combinatorial Optimization - EvoCOP 2009*, volume 5482 of *LNCS*, pages 25–36. Springer, 2009.
- [4] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.