
A Hybrid Algorithm for Computing Tours

in a Spare Parts Warehouse

Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{prandtstetter|raidl}@ads.tuwien.ac.at

Abstract. We consider a real-world problem arising in a warehouse for
spare parts. Items ordered by customers shall be collected and for this
purpose our task is to determine efficient pickup tours within the ware-
house. The algorithm we propose embeds a dynamic programming al-
gorithm for computing individual optimal walks through the warehouse
in a general variable neighborhood search (VNS) scheme. To enhance
the performance of our approach we introduce a new self-adaptive vari-

able neighborhood descent used as local improvement procedure within
VNS. Experimental results indicate that our method provides valuable
pickup plans, whereas the computation times are kept low and several
constraints typically stated by spare parts suppliers are fulfilled.

1 Introduction

Nowadays, spare parts suppliers are confronted with several problems. On the
one hand, they should be able to supply spare parts both on demand and as
fast as possible. On the other hand, they have to keep their storage as small as
possible for various economic reasons. Storage space itself is expensive, but more
importantly by adding additional capacity to the stock, the complexity of ad-
ministration increases substantially. Therefore, the demand for (semi-)automatic
warehouse management systems arises. Beside keeping computerized inventory
lists additional planning tasks can be transferred to the computer system. For
example, lists containing all articles to be reordered can be automatically gen-
erated.

Obviously the main task to be performed within a spare parts warehouse is
the issuing of items ordered by customers and to be sent to them as quickly as
possible. For this purpose, several warehousemen traverse the storage and collect
ordered articles which will then be brought to a packing station where all items
are boxed and shipped for each customer. Of course, the possible savings related
with minimizing collecting times of items are high and therefore effort should
be put into a proper tour planning. Various constraints related to capacities
of trolleys used for transporting collected articles, structural conditions of the
warehouse and delivery times guaranteed to the customers have to be considered.

The rest of this paper is organized as follows: The next section gives a de-
tailed problem definition. In Sec. 3 we present an overview of related work. A

2 Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

PS

racks

packing station

rack aisles

PS

main aisles

Fig. 1: An exemplary storage layout. Main aisles (vertical in this sketch) and rack aisles
(horizontally aligned) are joining each other orthogonally.

new hybrid approach based on variable neighborhood search and dynamic pro-

gramming is presented in Sec. 4. Experimental results and conclusions complete
the paper.

2 Problem Definition

The problem as considered within this paper can be defined as follows: We are
given a warehouse with a storage layout similar to that presented in Fig. 1,
i.e. several racks are aligned such that two types of aisles arise: rack aisles and
main aisles, whereas we assume that there are two main aisles with an arbitrary
number of rack aisles lying between them. While rack aisles provide access to
the racks main aisles only act as an interconnection between the rack aisles and
the packing station. We denote by R = {1, . . . , nR} the set of racks located in
the rack aisles.

In addition, a set of articles A, with A = {1, . . . , nA}, nA ≥ 1, is given.
Each article a ∈ A is stored at a non-empty set Ra of one or more racks, i.e.
∅ 6= Ra ⊆ R. The quantities of articles a ∈ A are given by qa : Ra → N.

We assume that a homogeneous fleet of nT trolleys used for carrying collected
items exists, each having capacity c. A group of nW warehousemen, 1 ≤ nW ≤
nT, is operating these trolleys and issuing ordered articles.

A set of customer orders is given, whereas each order consists of a list of arti-
cles with demands to be shipped to a specific address. Further, a latest delivery
time to be met is associated with each of these customer orders. Although the
assignment of orders to customers is important for a production system we are
only interested in the quantities of each article to be collected in the warehouse
for this work, since extra workers are assigned to pack all items according to
orders. Therefore, we define the set O of orders as the set of tuples (a, da) ∈ O,
with |O| = nO, stating the total integer demand da ≥ 1 of each article a ∈ A.
In addition, we assume that the capacities of all trolleys together, i.e. nT · c, is
greater than the amount of articles to be collected.

Let us denote by set S a finite set of selections, whereas a selection S ∈ S
is a set of triples (a, δ, r) such that r ∈ Ra, 1 ≤ δ ≤ qa(l), and there exists an
order (a, da) ∈ O with da ≥ δ. Further, we denote by T a set of tours whereas

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 3

for each Si ∈ S a tour Ti ∈ T exists. By tour Ti we understand a walk through
the warehouse visiting all locations contained in Si such that the corresponding
items of Si can be collected. The length of tour Ti ∈ T is denoted by c(Ti).

A solution x = (S, T ,Π) to the given problem consists of a set T of tours
corresponding to the selections in S as well as a mapping Π : T → {1, . . . , nW}
of tours to workers such that

– |S| = |T | ≤ nT,
– tour Ti ∈ T collects all articles a ∈ Si, Si ∈ S,
–

∑

S∈S

∑

(a,δ,l)∈S δ = da, for all a ∈ A,
– worker Π(Ti) processes tour Ti ∈ T ,
– all time constraints are met, i.e. for each customer order it has to be guar-

anteed that tour T ∈ T picking up the last not yet collected article must be
finished before the specific delivery time.

We formulate the given problem as an optimization problem in which the to-
tal length of the tours, i.e.

∑

T∈T c(T), as well as the violations of the capacity

constraints defined by the trolleys, i.e.
∑

S∈S max
{

∑

(a,δ,l)∈S δ − c, 0
}

, should

be minimized. For weighting the relative importance of violating capacity con-
straints compared to tour lengths, we introduce a weighting coefficient ω such
that the objective function can be written as

min
∑

T∈T

c(T) + ω ·
∑

S∈S

max







∑

(a,δ,l)∈S

δ − c, 0







(1)

For this work, ω is set to the maximum possible length of one tour picking up
one article plus one. Such a choice for ω implies that it is always better to use
an additional tour for collecting an item than violating a capacity constraint.

3 Related Work

Obviously, the stated problem is related to warehouse management in general.
An introduction to this topic as well as an overview over tour finding, storage
management and other related tasks is given in [1].

It is obvious that the stated problem forms a special variant of the well known
vehicle routing problem (VRP) [2]. In fact, the classical VRP is extended by ad-
ditional domain specific constraints. In the classical VRP one wants to find a set
of tours minimal with respect to their total length starting at a depot and visit-
ing a predefined set of customers. Further, the problem studied here is related to
the split delivery VRP [3], the VRP with time windows [4] and the capacitated

VRP [5]. To our knowledge, there exists so far no previous work considering a
combination of these variants of VRP in connection with the additionally defined
constraints.

Beside this obvious relationship with VRPs, this problem is also related to
the generalized network design problems [6] with respect to the possibility to
collect one article from different locations within the warehouse. At a time only
one node of such a cluster has to be visited.

4 Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

4 A Hybrid Variable Neighborhood Search Approach

Based on the fact that the problem examined within this paper is strongly re-
lated to the VRP, we expect that exact approaches are limited to relatively
small instances. In addition, short computation times are important, since the
observation was made that new orders are committed continuously by customers
which implies that the algorithm is restarted frequently. Since recently highly
effective variable neighborhood search (VNS) [7] approaches have been reported
for diverse variants of the VRP [8, 9] we also based our approach on a similar
concept. Within our hybrid VNS, variable neighborhood descent (VND) [7] is
used as embedded local search procedure, and subproblems corresponding to
the computation of individual tours for collecting particular items are solved
by means of dynamic programming [10], exploiting the specific structure of the
warehouse.

4.1 The Basic Principle

In this work, we assume that all orders stated by customers can be fulfilled with
respect to the capacity constraints defined by the trolleys, i.e. the total capacity
of the trolleys is not exceeded. Anyhow, in real-world settings the problem may
arise that these constraints cannot be satisfied. In that case a straightforward
preprocessing step is used, which partitions the set of orders such that for each
partition the capacity constraints are satisfied.

The tour planning algorithm mainly consists of two parts: (1) the allocation
of articles to at most nT selections and (2) the computation of concrete routes
through the warehouse for collecting all items assigned to the previously deter-
mined selections. Anyhow, both of these parts have to be executed intertwined,
since the evaluation of the mapping of articles to tours is based on the lengths
of these tours. Therefore, these two steps are repeated until no further improve-
ment can be achieved. Finally, an assignment of the walks to nW warehousemen
is done, such that the latest finishing time is as early as possible. As soon as
additional orders are committed by customers the whole algorithm is restarted
from the beginning. This can be done efficiently by using a straightforward in-
cremental update function.

4.2 Assignment of Articles to Tours

One crucial point of our algorithm is the assignment of articles to selections
such that in a second step walks through the warehouse can be computed. Nev-
ertheless, the capacity constraints stated by the trolleys as well as the maximum
number of available trolleys nT have to be regarded during this allocation step.

Construction Heuristic For quickly initializing our algorithm we developed
a construction method called collision avoiding heuristic (CAH). The main idea
of CAH is to divide the storage into m ≥ 1 physically non-overlapping zones

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 5

whereupon each one is operated by one trolley, i.e. m selections are generated.
For this work, we set m to nW.

Since the capacities of the trolleys are not regarded within this initialization
procedure the solution qualities produced by this heuristic are not outstanding.
The required computation times are, however, very low. Therefore, CAH can be
used for providing ad hoc solutions such that the workers start collecting the
first scheduled item while the rest of the tours is improved in the meantime.

Improvement Heuristic For improving solutions generated by CAH, we pre-
sent a variable neighborhood search (VNS) approach using an adapted ver-
sion of variable neighborhood descent (VND) as subordinate. The basic idea
of VNS/VND is to systematically swap between different neighborhood struc-
tures until no further improvement can be achieved. In fact, the crucial task
in designing such an approach is the proper definition of appropriate moves
used for defining the neighborhood structures incorporated in VNS and VND,
respectively. In our approach, the following seven different move types were im-
plemented:

BreakTour(i) Selection Si ∈ S is removed from S and all articles assigned to
Si are randomly distributed over all other selections Sj ∈ S \ Si.

MergeTour(i, j) Selections Si ∈ S and Sj ∈ S are both removed from S and
merged with each other into a new selection Si′ , which is then added to S.

ShiftArticle(i, j, a) Any solution generated by this move differs from the un-
derlying solution in one article a which is moved from selection Si to selection
Sj , with a ∈ Si and Si, Sj ∈ S.

ShiftArticleChangeRack(i, j, a, r) Analogously to the ShiftArticle move, this
move shifts an article a ∈ Si to selection Sj , with Si, Sj ∈ S. In addition to
this, a is now collected from rack r ∈ Ra regardless of the position it was
acquired before.

SplitTour(i) By applying this move, selection Si ∈ S is split into two new
selections Si′ and Si′′ such that |Si′ | = |Si′′ | or |Si′ | = |Si′′ |+ 1. Selection Si

is removed from S, whereas Si′ and Si′′ are added.
SwapArticle(i, j, a1, a2) This move swaps two articles a1 ∈ Si and a2 ∈ Sj ,

with Si, Sj ∈ S.
SwapArticleChangeRack(i, j, a1, a2, r1, r2) This move is similar to the Swap-

Article move. After swapping articles a1 ∈ Si and a2 ∈ Sj between selections
Si ∈ S and Sj ∈ S, the rack of a1 is changed to r1 ∈ Ra1

and that of a2 is
changed to r2 ∈ Ra2

.

Based on these move types, the neighborhood structures for VNS and VND
are defined, whereas the neighborhoods N1(x), . . . , Nkmax

(x), with 1 ≤ kmax ≤
|S| − 1, used within the shaking phase of VNS are purely based on BreakTour
moves such that within Nk(x), with 1 ≤ k ≤ kmax, k randomly chosen BreakTour
moves are applied to x. The neighborhood structures N1, . . . ,N6 for VND are
defined by a single application of one of the other six move types, such that
N1, . . . ,N6 apply SplitTour, MergeTour, ShiftArticle, ShiftArticleChangeRack,
SwapArticle, SwapArticleChangeRack, respectively.

6 Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

In addition to the proper definition of neighborhood structures, a beneficial
order used for systematically examining them is necessary and has a great influ-
ence on the performance of VND (cf. [11, 12]). Preliminary tests showed that the
contributions of neighborhood structures N1 and N2 are relatively high during
the beginning of VND but dramatically decrease after only a few iterations. This
is due to the fact that splitting and merging of tours is only important as long
as the capacity constraints are either violated or highly over-satisfied, i.e. there
is significant capacity left in more than one trolley. Anyhow, in most of the iter-
ations, i.e. in about 95% of the iterations, no improvement can be achieved by
these neighborhoods. Therefore, some dynamic order mechanism guaranteeing
that neighborhoods N1 and N2 are primarily examined during the beginning
phase of VND while being applied less frequently during the later iterations
seems to be important.

In contrast to self-adaptive VND as proposed by Hu and Raidl [11], we do
not punish or reward neighborhood structures based on their examination times,
but reorder the neighborhoods according to their success rates, i.e. the ratios of
improvements over examinations, only. The neighborhood order is updated each
time an improvement on the current solution could be achieved.

In addition, we adapted VND such that not only improvements on the cur-
rent solution are accepted but also moves can be applied which leave the current
objective value unchanged. To avoid infinite loops, at most ten non-improving
subsequent moves are allowed in our version of VND, whereas the i-th non-
improving move is accepted with probability 1 − (i − 1) · 0.1, only. All counters
regarding the acceptance of non-improving moves are reset as soon as an im-
provement could be achieved. As step function a next improvement strategy was
implemented, whereas a random examination order was chosen to uniformly
sample the current neighborhood.

4.3 Computing Individual Tours

Another crucial point of the proposed algorithm is the computation of concrete
tours which will be used by the warehousemen for collecting a specific set of
ordered items. Although the decision which article to collect next will finally
be made by the workers themselves, the system provides them a suggestion.
Further, the evaluation of the assignment of articles to selections is based on the
shortest possible tours, and therefore an efficient tour computation is needed.

Please note that a tour as used within this work does not correspond to
tours as used within works related to the traveling salesman problem or the
VRP. In fact, the main difference lies therein that tours within a storage are
allowed to visit each point of interest, i.e. among others the packing station,
crossings of aisles and rack positions, more than once. This is simply induced
by the circumstance that in most cases no direct connection between two points
of interest exists. Consequently, paths between points of interest can be walked
along more than once within one tour. Anyhow, an upper bound for the number
of times the same passage is walked can be provided based on the following two
observations.

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 7

v wPS
T1

T3

T5

T2

T4

(a)

v wPS
T1

T3

T5

T2

T4

(b)

Fig. 2: How to construct a tour T
′ from a given tour T under the assumption that T

visits two times location w immediately after location v.

Theorem 1. Given is a tour T , which is of shortest length with respect to a

set of points of interest, i.e. all of these points are visited by T . Further, we

assume that there exist two adjacent points of interest v and w which are twice

visited immediately consecutively in T . Then the passage between v and w is once

traversed from v to w and once vice versa in T .

Proof. Let us assume that the passage between points v and w is traversed twice
in the same direction. Then, we can split tour T into five subwalks T1, T2, T3,
T4 and T5 as shown in Fig. 2a, whereas PS denotes the packing station. A new
tour T ′ can be built by passing segment T1 from PS to v followed by traversing
walk T3 from v to w and finally walking along T5 from w to PS, see Fig. 2b.
Since v and w are adjacent, i.e. no other point of interest has to be visited when
walking from v to w, T ′ visits the same points of interest as T . Furthermore,
since subwalks T2 and T4 are not traversed within T ′, T ′ is shorter than T , which
is a contradiction to the assumption that T is optimal.

Lemma 1. Given is an optimal tour T with respect to a set of points of interest.

Then any two adjacent points v and w are visited at most twice immediately

consecutively by T .

Proof. This lemma directly follows from Theorem 1. Under the assumption that
points v and w are visited more than two times immediately consecutively the
passage between these two points has to be traversed at least twice in the same
direction.

Based on the special structure induced by warehouse layouts similar to that
shown in Fig. 1, we define aisle operations (AOs) and inter-aisle operations

(IOs). While AOs are representations of the walks to be performed within rack
aisles, IOs correspond to movements in main aisles. In Fig. 3 the sets of basic
AOs and IOs are shown. By appropriately combining these basic operations, so-
called modules can be defined, which will then be used for representing parts of
tours, for an example see Fig. 4a. Based on Theorem 1 it can be concluded that
the number of different module types needed for representing a tour is limited.

Although it is now obvious that tours can be built by selecting an appropriate
module for each aisle to visit, it can be observed that the resulting tours may
contain subtours, which are not connected to the rest of the tour, see for example
Fig. 4b. Unfortunately, as shown in Fig. 4c, the decision whether a combination

8 Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: In (a)–(e) the five basic aisle operations (AOs) are presented, whereas (f)–(j)
show basic inter-aisle operations (IOs).

(a)

invalidvalid

(b)

valid or invalid? valid or invalid?

(c)

Fig. 4: Figure (a) shows a module representing that part of a tour entering and leaving
the RA from and to the left side. This aisle operation is then suitably joined with
the rest of the tour by appropriate inter-aisle operations. For some combinations of
modules (b) it can be directly decided whether or not they are valid. In other cases (c)
this decision has to be postponed.

of modules is valid cannot always be made as soon as the next module is selected.
Let us denote by Nc(j) the set of those modules j′ which might be connected
with module j with respect to the IOs of j and j′, i.e. all modules j′ forming
together with j possibly valid tour parts. Further, we denote by Nv(j) the set
of those modules j′ ∈ Nc(j) such that the usage of modules j and j′ results in
a definitely valid tour (part).

Therefore, we introduce two (n+1)× (ν) matrices σ and τ , with n being the
number of aisles containing items to be selected and ν indicating the maximum
number of potentially used module types. An entry σij , with 1 ≤ i ≤ n and
1 ≤ j ≤ ν, corresponds to the length of a valid tour T ′ which visits all rack
locations in aisles 1 to i storing articles to be shipped to customers and performs
in aisle i the operations corresponding to module j. Analogously, an entry τij

corresponds to the total length of tour parts which visit all racks in aisles 1 to i

storing articles to be shipped and perform in aisle i the operations corresponding
to module j. Anyhow, these tour parts need not to be connected with each other
and therefore it has to be assured that they are going to be joined into one (big)
tour by operations performed in any aisle > i. Now, let us assume that ci(j)
denotes the length of the tour part(s) represented by module j when applied to
aisle i and module µ represents the IOs necessary for reaching the first aisle from

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 9

the packing station. Then, the entries of σ and τ can be computed by using the
following recursive functions:

σ0µ = τ0µ = 0 (2)

σ0j = τ0j = ∞ for j ∈ {1, . . . , ν} \ {µ} (3)

σij = ci(j) + min

{

{σi−1j′ : j′ ∈ Nv(j)}∪

{τi−1j′ : j′ ∈ Nv(j)}

}

for i ∈ {1, . . . , n}

for j ∈ {1, . . . , ν}
(4)

τij = ci(j) + min

{

{σi−1j′ : j′ ∈ Nc(j)}∪

{τi−1j′ : j′ ∈ Nc(j)}

}

for i ∈ {1, . . . , n}

for j ∈ {1, . . . , ν}
(5)

For decoding the optimal tour, one first needs to identify module J used for aisle
n in an optimal tour, i.e. J = arg minj∈{1,...,ν}{σnj}. Then, the computations
based on Eq. (4) and (5) have to be performed backwards. Anyhow, it can be
easily proven that σnJ 6= ∞ definitely holds. In case of ties any module can be
chosen.

4.4 Assignment of Workers to Tours

In a final step, an assignment of workers to tours has to be computed such that
the latest finishing time is as early as possible while regarding the guaranteed
delivery times. For this purpose, we implemented a General VNS scheme using
a greedy construction heuristic and random moves for the shaking phase. There
are three different move types defining neighborhood structures for VND: The
first one reassigns one tour from one worker to another worker. The second
one swaps two tours between two workers. The third move type rearranges the
schedule of one worker such that one tour is shifted towards the beginning of
the current working day. The used neighborhood order corresponds to this order
and is fixed. A first improvement strategy is used as step function in VND and
random moves are applied for the shaking phase of VNS.

5 Experimental Results

For evaluating the performance of the proposed method several test runs were
performed. Our algorithm was implemented in Java and all tests were run on
a single core of a Dual Opteron with 2.6GHz and 4GB of RAM. All instances
were randomly generated based on the characteristics of real-world data, i.e.
storage layouts and typical customer orders, provided by our industry partner
Dataphone GmbH.

For each of the 20 instances, we performed 40 independent runs, whereas
for the half of those runs we allowed that workers may reverse within one aisle,
while for the remaining ones we assured that once an aisle is entered, it is com-
pletely traversed by the warehousemen. To avoid excessive computation times,
a time limit of 1200 seconds for VNS was applied. See Tab. 1 for a detailed
listing of the obtained results. The column labled init presents the initial values

10 Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

Table 1: Average results over 20 runs for 20 instances. The initial values, the objective
values (including standard deviations in parentheses), the number of tours (nT), the
average filling degree of the trolleys used (quota) and the average computation times in
seconds are opposed for instances allowing to reverse in aisle and disallowing turning
around. The last column presents the p-values of an unpaired Wilcoxon rank sum
test, for evaluating whether the tours with turning around are 20% shorter than those
without reversing.

reversing disabled reversing enabled

inst. init objective nT quota time objective nT quota time p-Val

(01) 3750 3059.0 (132.6) 3.0 74.2 37.5 2281.0 (44.7) 3.0 74.2 35.5 <0.01
(02) 4200 3213.0 (156.5) 3.7 79.3 29.2 2348.0 (85.6) 3.5 85.0 59.1 <0.01
(03) 4260 3560.0 (109.0) 4.0 75.5 47.5 2541.5 (80.0) 4.0 75.5 78.7 <0.01
(04) 3210 2962.0 (35.8) 3.0 91.8 22.6 2298.5 (4.9) 3.0 91.8 30.6 <0.01
(05) 4020 3605.0 (105.6) 4.1 88.1 37.8 2466.5 (39.1) 4.0 90.3 55.5 <0.01

(06) 5060 4671.5 (106.7) 5.7 78.3 61.2 3576.0 (74.9) 5.4 82.0 114.6 <0.01
(07) 6050 5575.5 (79.3) 7.0 81.7 83.8 4052.5 (73.5) 6.8 82.9 192.7 <0.01
(08) 5650 5602.5 (155.8) 7.0 84.9 95.6 4159.5 (98.9) 7.0 85.5 212.6 <0.01
(09) 7000 6583.0 (246.9) 8.0 86.4 132.5 4887.5 (117.6) 8.0 86.4 334.1 <0.01
(10) 5070 4995.5 (252.1) 6.0 78.8 88.2 3589.5 (104.1) 5.8 82.2 128.8 <0.01

(11) 10740 9254.0 (268.4) 12.2 81.9 391.4 6158.5 (149.3) 11.1 90.4 845.4 <0.01
(12) 9350 8155.0 (175.9) 12.6 79.3 255.4 5952.0 (136.9) 11.7 85.4 689.0 <0.01
(13) 9970 8939.0 (256.2) 12.0 83.2 323.9 6102.0 (156.7) 11.3 88.0 715.7 <0.01
(14) 9520 9082.5 (246.5) 12.6 79.6 370.7 6165.5 (181.2) 11.7 85.8 864.3 <0.01
(15) 7690 7473.0 (270.4) 11.5 86.9 279.2 5860.5 (74.9) 11.2 89.2 673.0 0.02

(16) 11510 8878.0 (240.3) 12.2 81.9 716.4 6465.0 (165.9) 11.7 85.8 1200.0 <0.01
(17) 11460 8251.5 (216.7) 12.3 80.9 782.2 6261.5 (161.7) 11.7 85.4 1200.0 <0.01
(18) 11740 8520.0 (187.8) 12.6 79.3 748.5 6238.5 (159.9) 11.5 86.9 1200.0 <0.01
(19) 11480 8990.0 (216.8) 12.1 82.6 828.3 6349.0 (207.0) 11.7 85.8 1200.0 <0.01
(20) 12260 9644.5 (286.9) 12.6 79.6 819.0 6635.0 (164.4) 11.8 85.0 1200.0 <0.01

obtained by the so called s-shaped heuristic [1], whereas we simply try to col-
lect as much articles as possible during one tour regarding the capacities of the
trolleys used. The objective values provided within the nex columns correspond
to the weighted sum as presented in Eq. 1. The standard deviations (presented
in parentheses) are relatively low with respect to the tour lengths. Taking a
look at these average values it can be observed that the tour lengths can be re-
duced by about 20% on average when it is allowed to reverse within an aisle. To
statistically confirm this observation, we performed an unpaired Wilcoxon rank
sum test. The corresponding p-values are shown in the last column of Tab. 1.
Regarding the number of tours as well as the filling degree of the trolleys, no
significant difference between those runs allowing reversing and those forbidding
it can be identified. Finally, taking a closer look at the computation times, it can
be observed that for those instances including the option to reverse the running
times are longer. This can be reasoned by the fact that the number of aisle oper-
ations is more restricted for those runs forbidding reversing. Since the available
computation time was limited, the results obtained for instances 16–20 might

A Hybrid Algorithm for Computing Tours in a Spare Parts Warehouse 11

Table 2: Average contributions of the individual neighborhood structures to the final
solutions. The numbers represent the average ratios of improvements over examinations
over 20 runs for 20 instances with 25, 50, 100, 200 different items to be collected (#it.).

reversing disabled reversing enabled

inst. #it. N1 N2 N3 N4 N5 N6 N1 N2 N3 N4 N5 N6

(01) 25 3.6 10.6 60.2 34.4 46.9 0.2 5.9 15.9 70.2 61.5 18.2 0.0
(02) 25 4.1 12.0 61.0 32.2 33.8 0.0 5.6 19.7 73.0 46.2 16.3 1.1
(03) 25 3.6 11.8 60.5 40.6 49.9 0.1 4.4 17.1 73.4 55.2 27.9 0.0
(04) 25 4.5 11.1 52.1 27.4 34.6 0.0 7.4 18.2 70.9 42.8 6.9 0.4
(05) 25 6.6 15.2 65.9 29.3 45.2 0.8 9.1 19.9 74.2 58.0 32.3 0.0

(06) 50 10.4 17.6 69.6 3.7 18.7 0.0 10.7 23.3 81.8 53.5 7.6 0.0
(07) 50 12.2 20.7 74.3 6.0 42.0 0.0 12.9 25.7 85.6 59.6 48.2 0.0
(08) 50 13.5 19.5 72.3 1.7 55.9 0.0 19.1 28.6 87.9 29.9 40.2 0.0
(09) 50 13.9 20.3 74.4 41.2 46.3 0.0 17.8 27.8 85.8 46.8 37.4 0.0
(10) 50 9.8 17.4 70.8 9.2 22.3 0.0 12.6 23.1 81.8 66.9 18.5 0.0

(11) 100 16.0 27.1 76.3 7.9 24.6 0.0 21.6 29.4 88.5 44.0 37.0 0.0
(12) 100 18.9 29.9 77.8 0.9 24.7 0.0 18.4 28.8 88.3 47.2 39.2 0.0
(13) 100 16.5 26.2 75.9 5.9 26.7 0.0 23.5 29.3 87.3 60.4 44.9 0.0
(14) 100 14.3 27.6 78.2 1.1 19.5 0.0 19.4 27.2 88.0 50.5 33.8 0.0
(15) 100 18.2 23.2 73.4 1.1 12.8 0.0 20.1 26.7 85.3 51.1 30.8 0.0

(16) 200 18.0 30.3 75.3 2.9 8.1 0.0 25.7 31.5 88.8 46.4 30.5 0.0
(17) 200 17.9 28.8 75.7 0.0 7.9 0.0 27.0 31.8 88.8 39.3 49.2 0.0
(18) 200 19.2 28.6 76.0 3.5 15.0 0.0 28.1 32.2 88.8 53.8 38.6 0.0
(19) 200 16.1 28.1 74.5 1.8 17.3 0.0 26.2 29.8 88.4 35.9 35.1 0.0
(20) 200 16.4 28.2 75.4 1.1 6.7 0.0 27.5 34.7 90.2 46.6 32.8 0.0

be further improved when using looser time limits. Regarding the last step of
the algorithm, i.e. the assignment of tours to workers, all violations of the time
constraints could be resolved within a few iterations of the corresponding VNS
procedure.

Regarding the performance of the proposed neighborhoods, i.e. the ratio of
improvements over examinations, we observed that all of them except N6 con-
tribute substantially to the final solution whereas neighborhood N6 did almost
never add an improvement (see Tab. 2). Nevertheless, for the small instances
with 25 articles to be shipped, some improvements could be achieved even by
N6, and therefore we included it here. Regarding the other neighborhood struc-
tures, N3, i.e. the neighborhoods based on the ShiftArticle move, performed best.
It is interesting that neighborhood structure N4 did worse for those instances
forbidding turning around. However, this can be explained by the fact that for
these instances the degree of freedom is less than for the others which results
therein that once an aisle i has to be entered all ordered articles stored within
this aisle can be collected with less expenses from aisle i than from any other
aisle. The same observation holds for neighborhood structure N5, although this
effect is less prominent for the underlying move type.

12 Matthias Prandtstetter, Günther R. Raidl, and Thomas Misar

6 Conclusions

In this paper, we proposed a new hybrid algorithm combining variable neigh-

borhood search (VNS) with dynamic programming (DP) for solving a real-world
scheduling and tour finding problem within a spare parts warehouse. For boost-
ing the performance of the neighborhood structures used within variable neigh-

borhood descent (VND), we used a new self-adaptive VND rearranging the neigh-
borhoods according to their success rates. Individual optimal tours within the
spare parts warehouse are computed by means of dynamic programming, whereas
the special structure of the storage is exploited.

Experimental results showed that this approach performs good for instances
based on real-world characteristics. Further, we showed that the total tour
lengths can be reduced by about 20% on average when reversing within aisles
is allowed. Regarding the computation times, our approach is able to provide
good results within 1200 seconds which correspond to acceptable time limits in
real-world scenarios.

References

1. de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse
order picking: A literature review. European Journal of Operational Research
182(2) (2007) 481–501

2. Toth, P., Vigo, D.: The Vehicle Routing Problem. Number 9 in Monographs on
Discrete Mathematics and Applications. SIAM, Philadelphia (2002)

3. Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with split deliveries. Discrete
Applied Mathematics 50(3) (1994) 239–254

4. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2) (1987) 254–265

5. Ralphs, T.K., Kopman, L., Pulleyblank, W.R., Trotter, L.E.: On the capacitated
vehicle routing problem. Mathematical Programming 94(2–3) (2003) 343–359

6. Feremans, C., Labbe, M., Laporte, G.: Generalized network design problems. Eu-
ropean Journal of Operational Research 148(1) (2003) 1–13

7. Hansen, P., Mladenović, N.: Variable neighborhood search. In Glover, Kochen-
berger, eds.: Handbook of Metaheuristics. Kluwer Academic Publisher, New York
(2003) 145–184

8. Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search
heuristic for periodic routing problems. European Journal of Operational Research
(2007) In Press. doi:10.1016/j.ejor.2007.08.048.

9. Ostertag, A., Dörner, K.F., Hartl, R.F.: A variable neighborhood search integrated
in the POPMUSIC framework for solving large scale vehicle routing problems. In
Blesa, M.J., et al., eds.: Hybrid Metaheuristics. Volume 5296 of LNCS., Springer
(2008) 29–42

10. Bellman, R.E.: Dynamic Programming. Dover Publications Inc. (2003)
11. Hu, B., Raidl, G.R.: Variable neighborhood descent with self-adaptive

neighborhood-ordering. In Cotta, C., Fernandez, A.J., Gallardo, J.E., eds.: Pro-
ceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level
Metaheuristics. (2006)

12. Puchinger, J., Raidl, G.R.: Relaxation guided variable neighborhood search. In:
Proceedings of the XVIII Mini EURO Conference on VNS. (2005)

