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Abstract. This paper is about strategic decisions required for running
an urban station-based electric car-sharing system. In such a system,
users can rent and return publicly available electric cars from charging
stations. We approach the problem of deciding on the location and size
of these stations and on the total number of cars in such a system using
a bi-level model. The first level of the model identifies the number of
rental stations, the number of slots at each station, and the total number
of cars to be acquired. Then, such a generated solution is evaluated by
computing which trips can be accepted by the system using a path-based
heuristic on a time-expanded location network. This path-based heuristic
iteratively finds paths for the cars through this network. We compare
three different pathfinder methods, which are all based on the concept
of tree search using a greedy criterion. The algorithm is evaluated on
a set of benchmark instances which are based on real-world data from
Vienna, Austria using a demand model derived from taxi data of about
3500 taxis operating in Vienna. Computational tests showed that for
smaller instances the algorithm is able to find near optimal solutions
and that it scales well for larger instances.

Keywords: location problem, car-sharing, electric cars, variable neigh-
borhood search

1 Introduction

Urban transportation as a major consumer of energy and contributor to air pol-
lution raises challenges to local governments and companies that must be solved
in the near future. One of those challenges is to reduce the usage of conventional
cars in urban areas. It can already be observed that the market for alternatives
to combustion engine powered vehicles, especially (full) battery electric cars, is
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steadily growing. Moreover, car-sharing systems as alternative or addition to
public transport is getting increasingly popular and in many larger cities such
systems are already installed and in use. As the main drawbacks of electric cars—
high acquisition costs, limited battery range, and high infrastructure costs—is
mitigated when used in an urban shared environment, electric car-sharing sys-
tems attracted increased attention over the last years. Such car-sharing systems
provide a fleet of vehicles in a defined area of operation in which users can rent
and return cars. Specifically for electric cars, however, charging stations have
to be installed to recharge the battery of the vehicles. We assume a one-way
station-based system in which the users can rent and return the cars only at
these stations in contrast to free-floating systems where the customers can re-
turn the cars in any free parking space within the operational area. Therefore,
we consider stationary electric car-sharing systems where the decision is where
to place these stations and how many charging slots to install. This is crucial for
the functionality and success of the whole system. A good location for a station
naturally depends on the customer demand of the nearby area and therefore we
use a demand model to evaluate station locations. The demand model is given
by a forecast of a set of trip requests in which each request has an individ-
ual estimated profit. The evaluation method maximizes the total profit of the
acceptable requests.

This work considers the problem of deciding the charging locations, their
size, and the total number of cars in the system as combinatorial optimization
problem which is heuristically solved using a two-stage solution algorithm. In
the first stage, the decision variables are fixed using a variable neighborhood
search (VNS) [12]. Each generated solution candidate is evaluated in the second
stage using an iterated procedure based on a greedy criterion using a demand
forecast. Specifically, a greedy, a PILOT, and a beam search algorithm is used
to iteratively find paths for the used cars through the system. The presented
algorithm is evaluated on a set of benchmark instances based on real-world
data of Vienna, Austria. First, the problem is formally defined in Section 2.
Then, related work is described in Section 3 followed by the description of the
algorithm in Section 4. Computational results are presented in Section 5 and
finally, conclusions are drawn and possible future research directions are given
in Section 6.

2 Problem Definition

The charging station location problem (CSLP) is defined on a road network
G = (V,A) given by a set of vertices V and a set of directed arcs A representing
road segments. Each arc a = (i, j) ∈ A, i, j ∈ V has a length lij and an asso-
ciated weight representing the travel time δij needed to travel from vertex i to
j. Possible charging stations S ⊆ V are given by a subset of the vertices and
each potential station i ∈ S has an associated opening cost Fi ≥ 0, a capacity
Ci ∈ N, and a cost per slot Qi ≥ 0. The maximum number of cars is given by



H, and each car has the same acquisition cost Fc, battery capacity Bmax, and
charging rate per time unit ρ.

Furthermore, a set of requested trips K is given, which corresponds to a
demand forecast within the time horizon T = {0, . . . , Tmax} and is the basis of
the solution evaluation. Each request k ∈ K has a starting sk ∈ T and ending
time ek ∈ T with ek > sk, an origin ok ∈ V , and a destination dk ∈ V . Further,
a duration δk, an estimated battery consumption bk, and a profit pk is given
for each request k ∈ K. It is assumed that the customers are willing to walk
to a nearby station if the walking time does not exceed a pre-defined maximum
duration βw. Based on this maximum walking time we have a set of potential
starting N(ok) and ending stations N(dk) for each request k ∈ K. If there are
no potential stations within the walking range, i.e., N(ok) = ∅ or N(dk) = ∅
then the request is unrealizable and therefore not considered.

The goal of the CSLP is to find the set of stations to open S′ ⊆ S, the number
of slots to use for each open station, and the total number of cars H ′ ≤ H in the
system with a limited budget W such that the total profit of all accepted trips is
maximized. To compute the obtained profit each car c = 0, . . . ,H ′ − 1 must be
assigned a set of feasible trips K ′c ⊆ K where each trip k ∈ K ′c, ∀c = 0, . . . ,H ′−1
can only be assigned to at most one car c. Each car c = 0 . . . , H ′ − 1 must be
able to perform its assigned trips K ′c by ensuring capacity feasibility, battery
feasibility, and connectivity of the car route:

– Capacity feasibility is given when at each time-step t ∈ T there are no more
cars in station s ∈ S than the available number of slots.

– Battery feasibility is given if the battery capacity of the car is sufficient
for performing the requested trip taking potential preceding battery charg-
ing into account. More formally, the solution is battery feasible if between
two consecutive trips k1, k2 ∈ K starting / ending at station i of a car

min{(sk2 − ek1)ρ + Bk1

, Bmax} ≥ bk2 is valid, where Bk1

is the remaining
battery capacity of the car after performing trip k1.

– Connectivity is given when the ending station of a trip k is equal to the
starting station of the next trip.

Then, the total profit of a solution S is the total sum over the profits of all

accepted trips: p(S) =
∑H′−1

c=0

∑
k∈K′

c
pk. We are aware that in practice it might

be unrealistic to plan the accepted trips in such a way, but this academic problem
formulation allows us to obtain an upper bound for the total profit based on a
given demand forecast.

3 Related Work

The charging station location problem in the presented form is a relatively new
research topic and was introduced by Brandtstätter et al. [5]. In their work
the authors defined the problem, proved its NP-hardness and described some
polynomially solvable cases. Furthermore, they modeled the CSLP as integer
linear program in several ways and compared the efficiency of their models on



a set of artificially created and real-world instances. The best formulations are
able to solve real-world instances with up to 480 trips and 50 cars to proven
optimality. In another work Brandstätter et al. [4] considered stochastic aspects
of the demand and presented two-stage stochastic models and a heuristic for
solving the stochastic CSLP.

The literature of optimization problems arising in (electric) car-sharing sys-
tems is, however, broader and a recent literature survey can be found in [3].
A similar problem concerning the location of charging stations for electric car-
sharing systems was described by Boyacı et al. [2]. Additionally, they also con-
sidered operational decisions regarding relocation of cars from stations in low
to stations in high demand areas to balance the system as a whole. The topic
of relocating cars is also considered by Weikl and Bogenberger [15] who inves-
tigated different relocation strategies for free floating conventional car-sharing
systems. Related problems in the domain of exact methods and heuristics for
optimization problems arising in electric car-sharing systems are described, e.g.,
by Hess et al. [11], Ge et al. [10], Cavadas et al. [6], and Frade et al. [8]. Another
related problem of placing charging stations for electric taxis in urban areas was
approached by Asamer et al. [1]. The authors propose a decision support system
which identifies promising regions in which charging stations should be placed
instead of actual locations.

4 Algorithm Description

We approach this problem using a two-stage solution algorithm. In the first (or
upper) level it is fixed which stations are opened, how many slots are built at
each open station, and how many cars are purchased. Then, in the second (or
lower) level we compute which requests can be accepted by the system using the
solution of the upper level problem. As both the upper level and the lower level
problem are computationally demanding, we solve both of them heuristically.
Therefore, a variable neighborhood search (VNS) [12] is used for the upper level
and three different procedures based on a greedy criterion are used for solving
the second stage. In the next sections we will describe the algorithms in detail.

4.1 Variable Neighborhood Search for the Upper Level Problem

A solution to the upper level problem is represented by an integer vector z of
size |S| and each element zi, ∀i = 0, . . . , |S| − 1 can take values 0, . . . , Ci. In our
approach we determine the total number of cars of a solution candidate implicitly
by first fixing the stations and number of slots and then using as many cars as
possible with the remaining budget bounded by H.

The first step of the algorithm is to create an initial solution which is then
passed on to a subsequent variable neighborhood search. The initial solution
generation is a greedy construction heuristic based on following greedy criterion:
Each station is assigned an attractiveness value which determines the order of
the stations which are considered to be opened. This attractiveness value is the



number of requests which can start or end at this station and thereby repre-
sents a heuristic guidance which stations are useful for the given set of requests.
Then, the construction algorithm iterates over the set of stations in descending
order w.r.t. their attractiveness values, opens station i if the remaining budget
is sufficient, and chooses the number of slots out of the budget feasible values
of {1, . . . , Ci} uniformly at random. The algorithm ensures that there is enough
remaining budget to purchase at least one car and terminates if no station can
be opened anymore.

This starting solution is then passed to a general variable neighborhood
search, which was introduced by Hansen and Mladenović [12]. The underlying
variable neighborhood descent (VND) uses four different neighborhood struc-
tures (NBs) which are searched in the following order in a best improvement
fashion:

– Close station: In this neighborhood structure a randomly chosen station out
of the currently open ones is closed. As a consequence, this move primarily
increases the number of purchased cars and can therefore improve the ob-
jective value. Here, we do not only accept improving moves but also accept
moves which do not change the objective value. The idea behind this strat-
egy is to have as much budget available for the next neighborhood structures
as possible.

– Open station: A move in this neighborhood structure opens a previously
closed station with as many slots as possible.

– Change slots: An already open station i is chosen, the number of slots zi is
set to all feasible values out of {1, . . . , Ci} and the best result is taken.

– Swap slots: For each pair of stations i, j ∈ S for which zi 6= zj the values
of zi and zj are swapped. Resulting infeasibilities are repaired by iteratively
reducing the number of slots of station i or j (chosen uniformly at random)
by one until the solution is feasible again.

The VNS uses four shaking neighborhood structures which are based on
the NBs described above. The first two shaking NBs are based on the swap slots
neighborhood structure and performs two and four swaps, respectively. The third
and fourth NBs perform two and four moves in the close station neighborhood
structure.

4.2 Path-based Heuristic

After fixing the solution (z,H ′) of the upper level problem, in the lower level
problem we now have to compute the trips that are accepted by the system
so that the total profit is maximized. Therefore, we use a variant of the path-
based heuristic (PBH) introduced by Brandstätter et al. [5]. The PBH finds
iteratively paths for each car through space and time in an adaptable time-
expanded location network (TELN). The TELN is a time-discretized directed
acyclic multigraph basically consisting of one node for each station and time
unit and arcs between each two consecutive time slots. In the following we will
formally define the TELN GT = (N,A′):



First, the set of open stations is defined as S′ = {i ∈ S | zi > 0}. Then, for
each station i ∈ S′ and each time unit t ∈ T a node it is introduced forming
the set of nodes N . Additionally an artificial source rs and target node rt are
created. The set of arcs A′ is divided into three disjoint subsets of arcs AI , AW ,
AT and each arc a has an associated profit pa and a battery consumption ba.

– The set of initialization arcs AI = {(rs, i0) | i ∈ S′} ∪ {(itmax , r
t) | i ∈ S′}

are the arcs leaving the artificial source node to each station node of the
first time slot and entering the artificial target node from each station node
of the last time slot tmax. All initialization arcs have a profit and battery
consumption of zero.

– Waiting arcs AW are added between two time slots of any station, i.e., in
the simplest case AW = {(it, it′) | i ∈ S′, t ∈ T \ tmax, t

′ = t + 1}. This set,
however, can be reduced as we will see later. These arcs also have a profit
of zero but a negative battery consumption of −φi which corresponds to
battery charging.

– Finally, the set of trip arcs AT corresponds to the requested trips and con-
tains arcs for each trip that can be accepted (denoted by K ′ ⊆ K) with the
given set of stations S′. For each such trip k ∈ K ′ an arc is introduced for
all possible starting and ending station combinations, i.e., AT =

⋃
k∈K′ AT

k ,
with AT

k = {(isk , jek) | i ∈ N(ok), j ∈ N(dk)}, ∀k ∈ K ′. Each trip arc a has
battery consumption bk and profit pk, where k ∈ K ′ is the corresponding
request.

An illustrative example of a TELN with four stations is shown in Figure 1. In
this figure the solid lines are initialization or waiting arcs and the dashed lines
are trip arcs corresponding to a request.

rs rt

t = 0 t = tmax

Fig. 1. Example of a time-expanded location network with four open stations.

In this example we see a reduced version of the graph which omits many of
the unnecessary waiting arcs. Let N i ⊆ N = {ni0, . . . , ni

|Ni|} be the set of all

starting / ending nodes of all trips at station i ∈ S′ sorted in ascending order of
their starting / ending time. Then, the set of actual introduced waiting arcs is
the following: AW = {(i0, ni0)}∪{(ni|Ni|, itmax

)}∪{(nit, nit+1) | t = 0, . . . , |Ni|−1}.



After building the graph GT, as Algorithm 1 shows, the PBH consists of
iteratively finding paths from rs to rt in the TELN and updating the graph
based on the found path. The resulting objective value of the upper level solution
is then the total profit of all found paths where the profit of a path is defined
as the total profit of all requests fulfilled by this path. The path finding step
corresponds to solving a resource constrained shortest path problem with the
battery as resource and the negative profits as the arc weights to minimize. Note
that here we do not have to consider the station capacities as it is assured by
the update procedure of the graph, which is described later, that they can never
be violated. As this problem is NP-hard [9], we use several heuristics for solving
it. All of these heuristics construct iteratively a path starting from rs using a
greedy criterion based on the concept of a potential profit p′ of a node. For each
node it ∈ N a potential profit p′(it) is calculated by computing shortest paths
from it to the target node rt relaxing the battery constraints. In the PBH this is
done by computing shortest paths from rt to all other nodes in the arc-reversed
graph. Then, each time a path P is found through the TELN, the graph is
updated for the next iteration. Therefore, for each served request k ∈ K ′ on
P , all corresponding trip arcs AT

k are deleted from GT which ensures that one
request can only be fulfilled by at most one car. Furthermore, we have to ensure
capacity feasibility of the paths and therefore we introduce global variables uit,
∀i ∈ S′, t ∈ T which are initially set to zero. These variables store the current
number of cars at each station in each time step over all iterations. For each
used arc a = (it, jt′) ∈ P , i, j ∈ S′, we increase ujt′ by one and check if the fixed
number of slots of j is reached. If ujt′ = zj , then all incoming arcs of node jt′

are deleted from GT which ensures that in later iterations this node cannot be
reached anymore. Finally, also the potential profits of the nodes have to updated
and the shortest path values are recomputed.

Algorithm 1: Path-based Heuristic

Input : Upper level solution (z,H ′)
Output: Approximated profit
build time-expanded location graph GT

for i = 0, . . . , H ′ do
find feasible path from rs to rt in GT

update graph GT

if termination criterion is satisfied then
break;

return total profit of all paths

The PBH terminates if one of these conditions is satisfied:

– H ′ paths are found.

– The potential profit of rs is zero or rt is unreachable.



– The path finding algorithm could not find a path from rs to rt. This can
happen if it gets stuck at a node with either no outgoing arc or with only
outgoing arcs with a battery consumption greater than the remaining capac-
ity.

– The profit of the found path is zero. Although this condition is not needed for
the PBH to be valid it is introduced for improving its efficiency by reducing
the number of generated paths with zero profit.

In the following we will describe three heuristics we designed, implemented,
and evaluated for finding feasible paths. They are described in order of their
complexity and time consumption and a comparison of their performance is
given in Section 5.3.

Greedy pathfinder The greedy pathfinder always appends at the current node
it a battery-feasible arc a = (it, j

′
t) for which pa + p(j′t) is maximum and ties are

broken randomly.

PILOT pathfinder The PILOT pathfinder extends the greedy algorithm by
incorporating a look-ahead mechanism as described in [7]. Instead of always
extending the current partial solution with the arc a = (it, j

′
t) for which pa +

p(j′t) is maximum, for each possible extension a lower bound on the objective is
computed (using the greedy algorithm described above). Then, the extension is
performed which results in the highest value and ties are, again, broken randomly.

Beam Search pathfinder The beam search pathfinder is based on the beam
search algorithm [13]. Beam search uses a set of partial solutions of size kbw,
called the beam, and evaluates the kext most promising extensions to these. For
this problem we choose the extensions based on the greedy criterion as explained
before. In the end, all partial solutions of the beam are complete and the best
one among those is taken as the final solution.

5 Computational Results

The developed algorithm is tested on a set of benchmark instances based on
real-world data, which are described in Section 5.1. First, computational results
on a set of instances are shown, which previously also have been approached
by exact algorithms [5]. Then, in the second set of experiments, the developed
pathfinder methods are compared on a different set of instances with stricter
battery constraints to better highlight the differences of these methods.

5.1 Instance Description

The basis of all instances is the road network of Vienna, Austria obtained
with OpenStreetMap data1. We assume potential locations for stations at su-
permarkets, parking lots, and subway stations. The number of slots for each

1 https://www.openstreetmap.org/



station is chosen uniformly at random between 1 and 10. Station opening and
slot costs are chosen uniformly at random from Fi ∈ {9000, . . . , 64000} and
Qi ∈ {22000, . . . , 32000} Euro, respectively. We further assume fast charging
slots with a maximum charging rate per slot of 50 kW. The set of homogeneous
cars is based on the data of the Smart ED car with an acquisition cost of 20000
Euro, a battery capacity of 17.6 kWh, and a maximum charging rate of 17.6 kW.
The data for the requested trips is based on real Taxi data of one week in spring
provided by a Taxi provider of Vienna. For each trip we are given the starting
and ending point, and the duration and battery consumption is computed using
the routing framework by Prandtstetter et al. [14]. Furthermore, we are given
a starting and ending time, which is discretized in time intervals of 15 minutes,
resulting in 672 time periods. The profit is computed by assuming a rate of 0.3
Euro / minute which approximately corresponds to the rate of local car-sharing
systems. We assume that each trip can start and end at the three closest stations
within a walking distance of 5 minutes. Therefore, the original road network G
is extended by introducing an arc a′ = (j, i) for each arc a = (i, j) ∈ A of the
original network and setting lji = lij . We assume a walking speed of 1.34 m/s
and compute a shortest path using Dijkstra’s algorithm from the starting and
the ending point of each request to all stations using the walking time as arc
weight. The instance contains 693 potential station locations and 37965 trips.

As the size of the whole instance is very large, for the algorithm evaluation
we filtered the instance and use only a subset of the trips and stations. Fig-
ure 2 shows four subsets of instances I1, . . . , I4 based on the political districts of
Vienna.

Fig. 2. The 23 districts of Vienna, Austria with the highlighted subset of districts
which are used as instances.

The first instance I1 uses only the potential stations and requests starting
and ending in one of the five red districts. For I2 the yellow district is added and



for I3 the yellow and the blue districts. Finally, the largest instance I4 uses all ten
colored districts. Furthermore, the instance have properties shown in Table 1,
where rK is the average number of requests per hour, and bK is the average
energy consumption of the trips relative to the battery capacity of the Smart
ED car in percent.

Table 1. Additional instance data.

Instance |S| |K| rK bK

I1 105 108 0,68 3,10
I2 131 209 1,29 3,28
I3 198 719 4,31 3,37
I4 280 1347 8,04 3,27

Each such created instance is further split into specific instances by specifying a
maximum budget and a maximum number of cars.

These instances are preprocessed in two ways:

1. Stations in which no requests can start or end are not considered.
2. The times of the requested trips are shifted forward in time so that the first

fulfillable request starts at t = 0 and tmax is given by the ending time of
the last fulfillable request. Thereby, the size of T and hence the size of the
TELN decreases which results in a faster solution evaluation.

5.2 Comparison to Exact Algorithms

First, we compare the results of the developed algorithm with exact methods
based on integer linear programming (ILP) models developed by Brandstätter
et al. [5]. They proposed several models and three of them (C1, C2, F1) turned
out to performed best. Model C1 uses connectivity cuts and continuous battery
tracking, C2 uses connectivity cuts and battery-infeasible path cuts, and model
F1 is a multi-commodity flow formulation with continuous battery tracking. Ta-
ble 2 shows the results of our proposed VNS with the greedy pathfinder compared
to the results obtained from the exact models. We used instances with different
budget constraints out of W ∈ {1000000, 2000000, 3000000, 4000000, 5000000}
Euro and the number of cars H is restricted by either 10, 25, or 50. Here we
used only the district subsets of I1 and I2 to be able to make comparisons. For
instances I3 and I4 the state-of-the-art exact approaches are not able to produce
reasonable results anymore. Table 2 shows the average objective value over 30
independent runs of the VNS (obj), their associated standard deviation (sd), and
the best objective value over these 30 runs (objb). Each run was performed on
an Intel Xeon E5-2643 processor and terminated after 3600 seconds. The best
solution, however, was usually found earlier (depending on the size of the in-
stance) as the algorithm converged to its final solution. For the models the table



Table 2. Comparison to exact integer linear programming approaches

Instance VNS C1 C2 F1

W H I obj sd objb objlb objub gap objlb objub gap objlb objub gap

1M 10 I1 13559,0 303,7 13769 14045 14045,0 0,0 14045 14046,3 0,0 14045 14045,0 0,0
2M 10 I1 19563,2 489,6 20444 21899 21901,0 0,0 21899 21899,0 0,0 21899 21901,1 0,0
3M 10 I1 21411,1 220,2 21557 21956 21956,0 0,0 21956 21956 0,0 21956 21956,0 0,0
4M 10 I1 21430,4 198,1 21557 21956 21956,0 0,0 21956 21956,0 0,0 21956 21956,0 0,0
5M 10 I1 21493,1 123,1 21557 21956 21956,0 0,0 21956 21956,0 0,0 21956 21956,0 0,0
1M 25 I1 13542,8 338,5 13769 14045 14045,0 0,0 14045 14046,2 0,0 14045 14046,2 0,0
2M 25 I1 23467,8 320,2 24017 18302 25279,0 38,1 25279 25281,2 0,0 25279 25281,4 0,0
3M 25 I1 28089,8 538,9 29168 30845 30845,0 0,0 30845 30845,0 0,0 30845 30848,0 0,0
4M 25 I1 29807,1 359,4 30441 31215 31215,0 0,0 31215 31215,0 0,0 31215 31215,0 0,0
5M 25 I1 30410,1 190,7 30686 31215 31215,0 0,0 31215 31215,0 0,0 31215 31215,0 0,0
1M 50 I1 13625,1 201,0 13769 14045 14045,0 0,0 14045 14045,0 0,0 14045 14299,0 1,8
2M 50 I1 23511,4 342,7 24086 25147 25291,3 0,6 25279 25279,0 0,0 25186 25645,5 1,8
3M 50 I1 28783,9 524,6 29858 26057 31140,2 19,5 26837 31135,5 16,0 31131 31134,1 0,0
4M 50 I1 31545,2 410,6 32403 30948 33971,0 9,8 33708 33952,8 0,7 33877 34197,0 0,9
5M 50 I1 33154,4 425,9 33754 34093 34197,0 0,3 34197 34197,0 0,0 34197 34197,0 0,0
1M 10 I2 23142,6 389,6 23515 24403 24403,0 0,0 24403 24403,0 0,0 24403 24403,0 0,0
2M 10 I2 32032,7 748,9 33351 36916 37277,0 1,0 36846 37277,0 1,2 37277 37280,5 0,0
3M 10 I2 37041,1 873,7 38431 40822 40822,0 0,0 40822 40822,0 0,0 40822 40822,0 0,0
4M 10 I2 38967,6 347,9 39459 40822 40822,0 0,0 40822 40822,0 0,0 40822 40822,0 0,0
5M 10 I2 38967,2 320,1 39496 40822 40822,0 0,0 40822 40822,0 0,0 40822 40822,0 0,0
1M 25 I2 23141,2 436,7 23542 24403 24403,0 0,0 24403 24403,0 0,0 22675 27100,2 19,5
2M 25 I2 37457,9 818,4 38415 27340 40952,2 49,8 24809 40957,0 65,1 39667 43608,0 9,9
3M 25 I2 46500,5 1003,7 48301 36783 53172,5 44,6 52506 53166,0 1,3 52392 54470,6 4,0
4M 25 I2 49988,0 1092,5 51987 58219 58253,0 0,1 58160 58253,0 0,2 58155 58253,0 0,2
5M 25 I2 53639,6 981,8 55736 58253 58253,0 0,0 58253 58253,0 0,0 58253 58253,0 0,0
1M 50 I2 22962,8 591,7 23542 24403 24403,0 0,0 22895 24430,1 6,7 23180 27745,0 19,7
2M 50 I2 37349,1 825,6 38536 24852 40985,6 64,9 24031 40987,0 70,6 38940 43853,8 12,6
3M 50 I2 47953,0 837,4 49381 36783 53564,4 45,6 36783 53502,5 45,5 49906 55732,9 11,7
4M 50 I2 54131,0 1266,0 57060 47877 62012,2 29,5 47877 62014,9 29,5 61343 62958,9 2,6
5M 50 I2 59358,4 1453,9 61943 57238 66494,4 16,2 57238 66494,4 16,2 65783 66971,0 1,8



shows the lower bound (objlb), the upper bound (objub), and the optimality gap
(gap). The models are solved using CPLEX 12.6.3 with a time limit of 6 hours.

The results in Table 2 show that the VNS is barely able to reach the results
(objlb) of the exact methods when the gap is below 20%. For the larger instances
i1 with H = 50, however, the VNS starts finding better results than model C1
and C2. The average gap of the VNS to the optimal value of the optimally solved
instances is about 6.1%. After an analysis of the results we observed that the
main reason for the worse performance on some instances lies in the inaccuracy
of the solution evaluation. Although the greedy pathfinder is often able to find
the optimal path through the TELN, the overall evaluation procedure is just an
approximation since the path of each car is evaluated separately in succession.
Therefore, even if the VNS would generate an optimal solution, the pathfinder
heuristic would not be able to identify it as such because it might be assigned a
worse objective value from the procedure which calculates the accepted trips.

5.3 Pathfinder Results for Larger Instances

In the second set of experiments the impact of the used pathfinder (greedy (G),
PILOT (P), and beam search (B)) on the final results is investigated in more
detail. The instances, as described in Section 5.1 have a low trip density and
average energy consumption per trip. Preliminary results showed that for these
instances the greedy pathfinder always performed best because it is the fastest
algorithm and the PILOT and beam search method were never able to find
better paths. Therefore, we now assume an adapted demand forecast in which
the system is more utilized and the requested trips are longer. So, we change the
instances in the following way:

– The starting times of all requests of the instance are scaled in such a way
that they all start within an 8 hour period.

– The battery consumption of each request is increased by a factor of 6.

By applying these adaptions the instance becomes, on the one hand, more
crowded so that more trips are requested in a short time period and, on the
other hand, it becomes more battery restricted. Therefore, the used pathfinder
is more crucial to the solution evaluation. The results of the different algorithms
are shown in Table 3 and, again, 30 runs per instance are performed with a
maximum run-time of 3600 seconds.

In this table the instances are grouped by the subset of districts i1, . . . , i3
and the maximum number of cars H ∈ {10, 25, 50} resulting in 5 instances with
different budget constraints per row. For each row the geometric mean (objg),
the number of instances for which the algorithm yields the best average objective
value over all 30 runs (#best), and the results of the statistical tests are given.
For testing the statistical differences between the algorithms we performed one-
sided Wilcoxon rank sum tests using an error level of 5%. The entries of the table
corresponds to the number of instances for which algorithm A yields statistically
significant better results than algorithm B, i.e., the entries in column P below



Table 3. Results of the different pathfinders for the altered instances aggregated by
used subset of districts i and number of available cars H.

Instance objg #best #G>sig #P>sig #B>sig

i H G P B G P B P B G B G P

I1

10 17800,5 18040,9 17965,7 1 3 1 1 1 4 4 3 0
25 23752,6 23933,8 23886,5 1 4 0 1 1 4 0 4 0
50 25332,2 25229,1 25102,8 3 2 0 3 3 2 3 0 0

I2

10 28529,0 28829,0 28684,0 0 5 0 0 1 1 2 0 0
25 39973,8 39680,7 39220,2 5 0 0 3 5 0 2 0 0
50 42788,8 42317,0 42019,2 5 0 0 4 5 0 1 0 0

I3

10 46528,5 47068,0 46257,9 1 4 0 0 2 2 4 0 0
25 71937,7 71052,8 69499,3 4 1 0 3 4 1 4 0 0
50 81131,1 78513,6 76170,1 4 1 0 4 4 1 4 0 0

I4
10 46648,1 46499,7 45775,3 3 2 0 1 3 1 3 0 0
25 71833,6 69268,5 66719,6 5 0 0 4 5 0 3 0 0
50 81547,6 77482,9 75111,6 5 0 0 4 5 0 3 0 0

#G>sig are the number of instances the greedy pathfinder finds better results
than the PILOT pathfinder.

Table 3 shows that for the smallest instance I1 and for the instances with
H = 10 both the PILOT and the beam search pathfinder tend to yield better
results than the greedy pathfinder. As the instance size or the number of available
cars increases, however, the greedy pathfinder starts performing better than the
other two. Especially the beam search pathfinder is outperformed by the greedy
and PILOT pathfinder, as it could not find significantly better results than the
latter for any of our test instances. This behavior can be explained by the higher
run-time complexity for the PILOT and beam search pathfinder as the instance
size grows. When the greedy pathfinder is used, the algorithm can perform more
iterations overall and is therefore able to find better solutions.

6 Conclusions and Future Work

In this work a heuristic algorithm for finding and designing charging stations for
electric vehicles is presented. It is based on a bi-level model formulation in which
the first level decides on the station locations, number of slots per station, and
the total number of cars by using a variable neighborhood search. Then, for each
generated solution candidate of the first level, a path-based heuristic is used for
the evaluation, i.e., deciding which trips can be accepted by the system. For the
path-based heuristic three different path-finders are implemented and compared
to each other. The results show that for smaller instances and instances with a
smaller number of available cars that have a high trip density and many trips
with a high energy consumption, the PILOT pathfinder performs best in most
of these instances. On the other hand, if the instance size is getting larger, the



trips are getting shorter, or the trip density decreases, the greedy pathfinder
outperformed the other two. The beam search pathfinder was, however, not able
to consistently find any significantly better results than the greedy or the PILOT
method. The implemented algorithm was further compared with several exact
methods based on integer linear programming from the literature. The results
show that for those instances which are hard to solve by exact approaches and
thus have high optimality gaps, the VNS is able to yield better results. However,
it was not able to find solutions with the same quality for those instances that
could be solved to optimality. The main reason for this is that the solution
evaluation using the path-based heuristic is not exact and therefore the algorithm
is not able to find the optimal trips to be accepted. An exact evaluation might
improve these results but the algorithm would not scale well with the instance
size anymore.

Although we considered many aspects of a real-world electric car-sharing
system, some operational decisions are neglected yet. As one-way car-sharing
systems tend to fall out of balance over time because of the not uniformly dis-
tributed demand in the operational area some kind of re-distribution of the vehi-
cles must be performed. These re-distributions can be user-based, e.g., by giving
the users incentives, or system-based. When using the latter, the re-distribution
is usually performed by dedicated relocators who have to move cars between
stations. This step is important for the operational decisions of such an electric
car-sharing system but can also be considered for the strategic decisions of the
station planning.

Another interesting direction for future work are free-floating systems, in
which the users can rent and return the cars anywhere within the operational
area. When using electric cars in such a system, charging stations still have to be
planned and the re-distribution may become even more important. The impact
of using such a system on the trip acceptance rate, the user experience, and on
the strategic planning is promising and relevant for future research.
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8. Frade, I., Ribeiro, A., Gonçalves, G., Antunes, A.: Optimal location of charging
stations for electric vehicles in a neighborhood in lisbon, portugal. Transportation
research record: journal of the transportation research board (2252), 91–98 (2011)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

10. Ge, S., Feng, L., Liu, H.: The planning of electric vehicle charging station based
on grid partition method. In: Electrical and Control Engineering (ICECE), 2011
International Conference on. pp. 2726–2730. IEEE (2011)

11. Hess, A., Malandrino, F., Reinhardt, M.B., Casetti, C., Hummel, K.A., Barceló-
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